OPC Unified Architecture Specification
Part 3: Address Space Model
1 Scope

This specification describes the OPC Unified Architecture (OPC UA) AddressSpace and its Objects. This Part is the OPC UA Meta Model on which OPC UA Information Models are based.
2 Reference documents

Part 1: IEC 62541-1 OPC UA Specification: Part 1 – Overview and Concepts

Part 2: IEC 62541-2 OPC UA Specification: Part 2 – Security Model

Part 4: IEC 62541-4 OPC UA Specification: Part 4 – Services

Part 5: IEC 62541-5 OPC UA Specification: Part 5 – Information Model

Part 6: IEC 62541-6 OPC UA Specification: Part 6 – Mappings

Part 8: IEC 62541-8 OPC UA Specification: Part 8 – Data Access

Part 9: IEC 62541-9 OPC UA Specification: Part 9 – Alarms and Conditions

Part 11: IEC 62541-11 OPC UA Specification: Part 11 – Historical Access

XML Schema Part 1: http://www.w3.org/TR/xmlschema-1/

XML Schema Part 2: http://www.w3.org/TR/xmlschema-2/
XPATH: http://www.w3.org/TR/xpath/
3 Terms, definitions, abbreviations, and conventions

3.1 OPC UA Part 1 terms

The following terms defined in Part 1 apply.

AddressSpace

Attribute

Complex Data

Event

Information Model

Message

Method

Node

NodeClass

Notification

Object

ObjectType

Reference

ReferenceType

Service

Subscription

Variable

View

3.2 OPC UA Part 2 terms

There are no Part 2 terms used in this part.

3.3 OPC UA Address Space Model terms
3.3.1 DataType

A DataType is represented by a DataType Node. The DataType is used together with the ValueRank Attribute to define the data type of a Variable.
3.3.2 DataVariable

Variables that represent values of Objects, either directly or indirectly for complex Variables, that are always the TargetNode for a HasComponent Reference.

3.3.3 EventType

An ObjectType Node that represents the type definition of an Event.

3.3.4 Hierarchical Reference

A Referece that is used to construct hierarchies in the AddressSpace.
NOTE: All hierarchical ReferenceTypes are derived from HierarchicalReferences.

3.3.5 InstanceDeclaration

A Node that is used by a complex TypeDefinitionNode to expose its complex structure. It is an instance used by a type definition.

3.3.6 ModellingRule

Metadata of an InstanceDeclaration that defines how the InstanceDeclaration will be used for instantiation. It also defines subtyping rules for an InstanceDeclaration.

3.3.7 Property

Variables that are the TargetNode for a HasProperty Reference. Properties describe the characteristics of a Node.

3.3.8 SourceNode

A Node having a Reference to another Node. For example, in the Reference “A contains B”, “A” is the SourceNode.

3.3.9 TargetNode

A Node that is referenced by another Node. For example, in the Reference “A Contains B”, “B” is the TargetNode.

3.3.10 TypeDefinitionNode

A Node that is used to define the type of another Node. ObjectType and VariableType Nodes are TypeDefinitionNodes.

3.3.11 VariableType

A Node that represents the type definition for a Variable.

3.4 Abbreviations and symbols

UA
Unified Architecture

UML
Unified Modeling Language

URI
Uniform Resource Identifier

W3C
World Wide Web Consortium

XML
Extensible Markup Language

3.5 Conventions

3.5.1 Conventions for AddressSpace figures

Nodes and their References to each other are illustrated using figures. Figure 1 illustrates the conventions used in these figures.

[image: image1.wmf]

Node

Class

Browse

 Name

References

HasComponent

*

*

Attributes

Target

Node

HasComponent

Target

Node

Figure 1 – AddressSpace Node diagrams

In these figures, rectangles represent Nodes. Node rectangles may be titled with one or two lines of text. When two lines are used, the first text line in the rectangle identifies the NodeClass and the second line contains the BrowseName. When one line is used, it contains the BrowseName.

Node rectangles may contain boxes used to define their Attributes and References. Specific names in these boxes identify specific Attributes and References.

Shaded rectangles with rounded corners and with arrows passing through them represent References. The arrow that passes through them begins at the SourceNode and points to the TargetNode. References may also be shown by drawing an arrow that starts at the Reference name in the “References” box and ends at the TargetNode.

3.5.2 Conventions for defining NodeClasses

Clause 5 defines AddressSpace NodeClasses. Table 1 describes the format of the tables used to define NodeClasses.

Table 1 – NodeClass Table Conventions

	Name
	Use
	Data Type
	Description

	Attributes
	
	
	

	
“Attribute name”
	“M” or “O”
	Data type of the Attribute
	Defines the Attribute.

	
	
	
	

	References
	
	
	

	
“Reference name”
	“1”, “0..1” or “0..*”
	Not used
	Describes the use of the Reference by the NodeClass.

	
	
	
	

	Standard Properties
	
	
	

	
“Property name”
	“M” or “O”
	Data type of the Property
	Defines the Property.

The Name column contains the name of the Attribute, the name of the ReferenceType used to create a Reference or the name of a Property referenced using the HasProperty Reference.

The Use column defines whether the Attribute or Property is mandatory (M) or optional (O). When mandatory the Attribute or Property shall exist for every Node of the NodeClass. For References it specifies the cardinality. The following values may apply:

· “0..*” identifies that there are no restrictions, that is, the Reference does not have to be provided but there is no limitation how often it can be provided;

· “0..1” identifies that the Reference is provided at most once;

· “1” identifies that the Reference must be provided exactly once.

The Data Type column contains the name of the DataType of the Attribute or Property. It is not used for References.

The Description column contains the description of the Attribute, the Reference or the Property.

Only this specification may define Attributes. Thus, all Attributes of the NodeClass are specified in the table and can only be extended by other parts of this multi-part specification.

This specification also defines ReferenceTypes, but ReferenceTypes can also be specified by a server or by a client using the NodeManagement Services specified in Part 4. Thus, the NodeClass tables contained in this specification can contain the base ReferenceType called References identifying that any ReferenceType may be used for the NodeClass, including system specific ReferenceTypes. The NodeClass tables only specify how the NodeClasses can be used as SourceNodes of References, not as TargetNodes. If a NodeClass table allows a ReferenceType for its NodeClass to be used as SourceNode, this is also true for subtypes of the ReferenceType. However, subclasses of the ReferenceType may restrict its SourceNodes.

This specification defines Properties, but Properties can be defined by other standard organizations or vendors and Nodes can have Properties that are not standardised. Properties defined in this document are defined by their name, which is mapped to the BrowseName having the NamespaceIndex 0, which represents the Namespace for OPC UA.
The “use” column (optional or mandatory) does not imply a specific ModellingRule for Properties. Different server implementation will chose to use ModellingRules appropriate for them.
4 AddressSpace concepts

4.1 Overview

The following subclauses define the concepts of the AddressSpace. Clause 5 defines the NodeClasses of the AddressSpace representing the AddressSpace concepts. Clause 6 defines details on the type model for ObjectTypes and VariableTypes. Standard ReferenceTypes, DataTypes and EventTypes are defined in Clauses 7-9.

The informative Annex A describes general considerations how to use the Address Space Model and the informative Annex B provides a UML Model of the Address Space Model. The normative Annex C defines the OPC Binary Types Description System as a format to specify data type structures and the normative Annex D defines a graphical notation for OPC UA data.
4.2 Object Model

The primary objective of the OPC UA AddressSpace is to provide a standard way for servers to represent Objects to clients. The OPC UA Object Model has been designed to meet this objective. It defines Objects in terms of Variables and Methods. It also allows relationships to other Objects to be expressed. Figure 2 illustrates the model.

[image: image2.wmf]

Object

Variable

s

Methods

_____()

_____()

_____()

E

vent

N

otifications

Data change

N

otifications

References to

other O

bjects

Invoke

Read/Write

Figure 2 – OPC UA Object Model

The elements of this model are represented in the AddressSpace as Nodes. Each Node is assigned to a NodeClass and each NodeClass represents a different element of the Object Model. Clause 5 defines the NodeClasses used to represent this model.

4.3 Node Model

4.3.1 General

The set of Objects and related information that the OPC UA server makes available to clients is referred to as its AddressSpace. The model for Objects is defined by the OPC UA Object Model (see 4.2).

Objects and their components are represented in the AddressSpace as a set of Nodes described by Attributes and interconnected by References. Figure 3 illustrates the model of a Node and the remainder of this subclause discusses the details of the Node Model.

[image: image3.wmf]

Node

Node

 References

Attributes

R

eference

s define relationships

to other nodes

Attributes describe a node

Figure 3 – AddressSpace Node Model

4.3.2 NodeClasses

NodeClasses are defined in terms of the Attributes and References that shall be instantiated (given values) when a Node is defined in the AddressSpace. Attributes are discussed in 4.3.3 and References in 4.3.4.

Clause 5 defines the NodeClasses for the OPC UA AddressSpace. These NodeClasses are referred to collectively as the metadata for the AddressSpace. Each Node in the AddressSpace is an instance of one of these NodeClasses. No other NodeClasses shall be used to define Nodes, and as a result, clients and servers are not allowed to define NodeClasses or extend the definitions of these NodeClasses.

4.3.3 Attributes

Attributes are data elements that describe Nodes. Clients can access Attribute values using Read, Write, Query, and Subscription/MonitoredItem Services. These Services are defined in Part 4.

Attributes are elementary components of NodeClasses. Attribute definitions are included as part of the NodeClass definitions in Clause 5 and, therefore, are not included in the AddressSpace.

Each Attribute definition consists of an attribute id
, a name, a description, a data type and a mandatory/optional indicator. The set of Attributes defined for each NodeClass shall not be extended by clients or servers.

When a Node is instantiated in the AddressSpace, the values of the NodeClass Attributes are provided. The mandatory/optional indicator for the Attribute indicates whether the Attribute has to be instantiated.

4.3.4 References

References are used to relate Nodes to each other. They can be accessed using the browsing and querying Services defined in Part 4.

Like Attributes, they are defined as fundamental components of Nodes. Unlike Attributes, References are defined as instances of ReferenceType Nodes. ReferenceType Nodes are visible in the AddressSpace and are defined using the ReferenceType NodeClass (see 5.3).

The Node that contains the Reference is referred to as the SourceNode and the Node that is referenced is referred to as the TargetNode. The combination of the SourceNode, the ReferenceType and the TargetNode are used in OPC UA Services to uniquely identify References. Thus, each Node can reference another Node with the same ReferenceType only once. Any subtypes of concrete ReferenceTypes are considered to be equal to the base concrete ReferenceTypes when identifying References (see 5.3 for subtypes of ReferenceTypes). Figure 4 illustrates this model of a Reference.

[image: image4.wmf]

Source

Node

*ReferenceName

Target

Node

* Name

of the R

eference’s

 Reference

Type

Figure 4 – Reference Model

The TargetNode of a Reference may be in the same AddressSpace or in the AddressSpace of another OPC UA server. TargetNodes located in other servers are identified in OPC UA Services using a combination of the remote server name and the identifier assigned to the Node by the remote server.

OPC UA does not require that the TargetNode exists, thus References may point to a Node that does not exist.

4.4 Variables

4.4.1 General

Variables are used to represent values. Two types of Variables are defined, Properties and DataVariables. They differ in the kind of data they represent and whether they can contain other Variables.

4.4.2 Properties

Properties are server-defined characteristics of Objects, DataVariables and other Nodes. Properties differ from Attributes in that they characterise what the Node represents, such as a device or a purchase order. Attributes define additional metadata that is instantiated for all Nodes from a NodeClass. Attributes are common to all Nodes of a NodeClass and only defined by this specification whereas Properties can be server-defined.
For example, an Attribute defines the DataType of Variables whereas a Property can be used to specify the engineering unit of some Variables.

To prevent recursion, Properties are not allowed to have Properties defined for them. To easily identify Properties, the BrowseName of a Property shall be unique in the context of the Node containing the Properties (see 5.6.3 for details).

A Node and its Properties shall always reside in the same server.

4.4.3 DataVariables

DataVariables represent the content of an Object. For example, a file Object may be defined that contains a stream of bytes. The stream of bytes may be defined as a DataVariable that is an array of bytes. Properties may be used to expose the creation time and owner of the file Object.

For example, if a DataVariable is defined by a data structure that contains two fields, “startTime” and “endTime”, it might have a Property specific to that data structure, such as “earliestStartTime”.

As another example, function blocks in control systems might be represented as Objects. The parameters of the function block, such as its setpoints, may be represented as DataVariables. The function block Object might also have Properties that describe its execution time and its type.

DataVariables may have additional DataVariables, but only if they are complex. In this case, their DataVariables shall always be elements of their complex definitions. Following the example introduced by the description of Properties in 4.4.2, the server could expose “startTime” and “endTime” as separate components of the data structure.

As another example, a complex DataVariable may define an aggregate of temperature values generated by three separate temperature transmitters that are also visible in the AddressSpace. In this case, this complex DataVariable could define HasComponent References from it to the individual temperature values that it is composed of.

4.5 TypeDefinitionNodes

4.5.1 Overview

OPC UA servers shall provide type definitions for Objects and Variables. The HasTypeDefinition Reference shall be used to link an instance with its type definition represented by a TypeDefinitionNode. Type definitions are required, however, Part 5 defines a BaseObjectType, a PropertyType and a BaseDataVariableType so a server can use such a base type if no more specialised type information is available. Objects and Variables inherit the Attributes specified by their TypeDefinitionNode(see 6.4 for details).

In some cases, the NodeId used by the HasTypeDefinition Reference will be well-known to clients and servers. Organizations may define TypeDefinitionNodes that are well-known in the industry. Well-known NodeIds of TypeDefinitionNodes provide for commonality across OPC UA servers and allow clients to interpret the TypeDefinitionNode without having to read it from the server. Therefore, servers may use well-known NodeIds without representing the corresponding TypeDefinitionNodes in their AddressSpace. However, the TypeDefinitionNodes shall be provided for generic clients. These TypeDefinitionNodes may exist in another server.

The following example, illustrated in Figure 5, describes the use of the HasTypeDefinition Reference. In this example, a setpoint parameter “SP” is represented as a DataVariable in the AddressSpace. This DataVariable is part of an Object not shown in the figure.

To provide for a common setpoint definition that can be used by other Objects, a specialised VariableType is used. Each setpoint DataVariable that uses this common definition will have a HasTypeDefinition Reference that identifies the common “SetPoint” VariableType.

[image: image5.emf]

Th is value i s dynamic, but its initial value i s inherited from the value of the VariableT ype . The inherited value may be overridden when the V ariable is created by the server .

Variable defined by a Variable Type. Inherited Value may be overridden.

TypeDefinition Nodes

Variable Type “SetPoint”

 Attributes V alue ______

Variable “SP”

 Attribu tes V alue _ _____

 References Has TypeDefinition

Figure 5 – Example of a Variable Defined By a VariableType

4.5.2 Complex TypeDefinitionNodes and their InstanceDeclarations

TypeDefinitionNodes can be complex. A complex TypeDefinitionNode also defines References to other Nodes as part of the type definition. The ModellingRules defined in 6.4.4 specify how those Nodes are handled when creating an instance of the type definition.

A TypeDefinitionNode references instances instead of other TypeDefinitionNodes to allow unique names for several instances of the same type, to define default values and to add References for those instances that are specific to this complex TypeDefinitionNode and not to the TypeDefinitionNode of the instance. For example, in Figure 6 the ObjectType “AI_BLK_TYPE”, representing a function block, has a HasComponent Reference to a Variable “SP” of the VariableType “SetPoint”. “AI_BLK_TYPE” could have an additional setpoint Variable of the same type using a different name. It could add a Property to the Variable that was not defined by its TypeDefinitionNode “SetPoint”. And it could define a default value for “SP”, that is, each instance of “AI_BLK_TYPE” would have a Variable “SP” initially set to this value.

[image: image6.emf]

Variable Type “SetPoint”

 Attributes V alue ______

Object Type “AI_BLK_ TYPE”

 References HasComponent _____ _

Variable defined by a VariableType . Used by a TypeD efinition Node and is therefore an InstanceDeclaration

This value is not dynamic. Inherited v alue may be overridden.

TypeDefinition Nodes

Variable “SP”

 Attributes Value ______

 References Has TypeDefinition

Figure 6 – Example of a Complex TypeDefinition

This approach is commonly used in object-oriented programming languages in which the variables of a class are defined as instances of other classes. When the class is instantiated, each variable is also instantiated, but with the default values (constructor values) defined for the containing class. That is, typically, the constructor for the component class runs first, followed by the constructor for the containing class. The constructor for the containing class may override component values set by the component class.

To distinguish instances used for the type definitions from instances that represent real data, those instances are called InstanceDeclarations. However, this term is used to simplify this specification. If an instance is an InstanceDeclaration or not is only visible in the AddressSpace by following its References. Some instances may be shared and therefore referenced by TypeDefinitionNodes, InstanceDeclarations and instances. This is similar to class variables in object-oriented programming languages.

4.5.3 Subtyping

This specification allows subtyping of type definitions. The subtyping rules are defined in Clause 6. Subtyping of ObjectTypes and VariableTypes allows:

· clients that only know the supertype are able to handle an instance of the subtype as if it is an instance of the supertype;

· instances of the supertype can be replaced by instances of the subtype;

· specialised types that inherit common characteristics of the base type.

In other words, subtypes reflect the structure defined by their supertype but may add additional characteristics. For example, a vendor may wish to extend a general “TemperatureSensor” VariableType by adding a Property providing the next maintenance interval. The vendor would do this by creating a new VariableType which is a TargetNode for a HasSubtype reference from the original VariableType and adding the new Property to it.

4.5.4 Instantiation of complex TypeDefinitionNodes

The instantiation of complex TypeDefinitionNodes depends on the ModellingRules defined in 6.4.4. However, the intention is that instances of a type definition will reflect the structure defined by the TypeDefinitionNode. Figure 7 shows an instance of the TypeDefinitionNode “AI_BLK_TYPE”, where the ModellingRule Mandatory, defined in 6.4.4.5.2, was applied for its containing Variable. Thus, an instance of “AI_BLK_TYPE”, called AI_BLK_1”, has a HasTypeDefinition Reference to “AI_BLK_TYPE”. It also contains a Variable “SP” having the same BrowseName as the Variable “SP” used by the TypeDefinitionNode and thereby reflects the structure defined by the TypeDefinitionNode.

[image: image7.emf]

Variable Type “SetPoint”

 Attributes V alue _____ _

This value is dynamic, but its initial value is inherited. The inherited value may be overridden when the variable is created by the server.

Object “AI_BLK_ 1”

 References HasTypeDefinition HasComponent ______

Object Type “AI_BLK_ TYPE”

 References Has Component ______

Variable defined by a Variable Type.

This value is not dyna mic. Inherited v alue may be overridden.

Variable defined by being part of the Object Type.

Type Definition Nodes

Variable “ SP ”

 Attributes V alue

 References HasTypeDefinition ______

Variable “SP”

 Attributes V alue

 References HasTypeDefinition ______

Figure 7 – Object and its Components defined by an ObjectType

A client knowing the ObjectType “AI_BLK_TYPE” can use this knowledge to directly browse to the containing Nodes for each instance of this type. This allows programming against the TypeDefinitionNode. For example, a graphical element may be programmed in the client that handles all instances of “AI_BLK_TYPE” in the same way by showing the value of “SP”.

There are several constraints related to programming against the TypeDefinitionNode. A TypeDefinitionNode or an InstanceDeclaration shall never reference two Nodes having the same BrowseName using hierarchical References in forward direction. Instances based on InstanceDeclarations shall always keep the same BrowseName as the InstanceDeclaration they are derived from. A special Service defined in Part 4 called TranslateBrowsePathsToNodeIds may be used to identify the instances based on the InstanceDeclarations. Using the simple Browse Service might not be sufficient since the uniqueness of the BrowseName is only required for TypeDefinitionNodes and InstanceDeclarations, not for other instances. Thus, “AI_BLK_1” may have another Variable with the BrowseName “SP”, although this one would not be derived from an InstanceDeclaration of the TypeDefinitionNode.

Instances derived from an InstanceDeclaration shall be of the same TypeDefinitionNode or a subtype of this TypeDefinitionNode.

A TypeDefinitionNode and its InstanceDeclarations shall always reside in the same server. However, instances may point with their HasTypeDefinition Reference to a TypeDefinitionNode in a different server.

4.6 Event Model

4.6.1 Overview

The Event Model defines a general purpose eventing system that can be used in many diverse vertical markets.

Events represent specific transient occurrences. System configuration changes and system errors are examples of Events. Event Notifications report the occurrence of an Event. Events defined in this document are not directly visible in the OPC UA AddressSpace. Objects and Views can be used to subscribe to Events. The EventNotifier Attribute of those Nodes identifies if the Node allows subscribing to Events. Clients subscribe to such Nodes to receive Notifications of Event occurrences.

Event Subscriptions use the Monitoring and Subscription Services defined in Part 4 to subscribe to Event Notifications of a Node.

Any OPC UA server that supports eventing shall expose at least one Node as EventNotifier. The Server Object defined in Part 5 is used for this purpose. Events generated by the server are available via this Server Object. A server is not expected to produce Events if the connection to the event source is down for some reason (i.e. the system is offline).
Events may also be exposed through other Nodes anywhere in the AddressSpace. These Nodes (identified via the EventNotifier Attribute) provide some subset of the Events generated by the server. The position in the AddressSpace dictates what this subset will be. For example, a process area Object representing a functional area of the process would provide Events originating from that area of the process only. It should be noted that this is only an example and it is fully up to the server to determine what Events should be provided by which Node.

4.6.2 EventTypes

Each Event is of a specific EventType. A server may support many types. This part defines the BaseEventType that all other EventTypes derive from. It is expected that other companion specifications will define additional EventTypes deriving from the base types defined in this part.

The EventTypes supported by a server are exposed in the AddressSpace of a server. EventTypes are represented as ObjectTypes in the AddressSpace and do not have a special NodeClass associated to them. Part 5 defines how a server exposes the EventTypes in detail.

EventTypes defined in this document are specified as abstract and therefore never instantiated in the AddressSpace. Event occurrences of those EventTypes are only exposed via a Subscription. EventTypes exist in the AddressSpace to allow clients to discover the EventType. This information is used by a client when establishing and working with Event Subscriptions. EventTypes defined by other parts of this multi-part specification or companion specifications as well as server specific EventTypes may be defined as not abstract and therefore instances of those EventTypes may be visible in the AddressSpace although Events of those EventTypes are also accessible via the Event Notification mechanisms.

Standard EventTypes are described in Clause 9. Their representation in the AddressSpace is specified in Part 5.

4.6.3 Event Categorization

Events can be categorised by creating new EventTypes which are subtypes of existing EventTypes but do not extend an existing type. They are used only to identify an event as being of the new EventType. For example, the EventType DeviceFailureEventType could be subtyped into TransmitterFailureEventType and ComputerFailureEventType. These new subtypes would not add new Properties or change the semantic inherited from the DeviceFailureEventType other than purely for categorization of the Events.

Event sources can also be organised into groups by using the Event ReferenceTypes described in 7.18 and 7.19. For example, a server may define Objects in the AddressSpace representing Events related to physical devices, or Event areas of a plant or functionality contained in the server. Event References would be used to indicate which Event sources represent physical devices and which ones represent some server-based functionality. In addition, References can be used to group the physical devices or server-based functionality into hierarchical Event areas. In some cases, an Event source may be categorised as being both a device and a server function. In this case, two relationships would be established. Refer to the description of the Event ReferenceTypes for additional examples.

Clients can select a category or categories of Events by defining content filters that include terms specifying the EventType of the Event or a grouping of Event sources. The two mechanisms allow for a single Event to be categorised in multiple manners. A client could obtain all Events related to a physical device or all failures of a particular device.

4.7 Methods

Methods are “lightweight” functions, whose scope is bounded by an owning
 Object, similar to the methods of a class in object-oriented programming or an owning ObjectType, similar to static methods of a class. Methods are invoked by a client, proceed to completion on the server and return the result to the client. The lifetime of the Method’s invocation instance begins when the client calls the Method and ends when the result is returned.

While Methods may affect the state of the owning Object, they have no explicit state of their own. In this sense, they are stateless. Methods can have a varying number of input arguments and return resultant arguments. Each Method is described by a Node of the Method NodeClass. This Node contains the metadata that identifies the Method’s arguments and describes its behaviour.

Methods are invoked by using the Call Service defined in Part 4. Each Method is invoked within the context of an existing session. If the session is terminated during Method execution, the results of the Method’s execution cannot be returned to the client and are discarded. In that case, the Method execution is undefined, that is, the Method may be executed until it is finished or it may be aborted.

Clients discover the Methods supported by a server by browsing for the owning Objects References that identify their supported Methods.

5 Standard NodeClasses

5.1 Overview

This clause defines the NodeClasses used to define Nodes in the OPC UA AddressSpace. NodeClasses are derived from a common, Base NodeClass. This NodeClass is defined first, followed by those used to organise the AddressSpace and then by the NodeClasses used to represent Objects.

The NodeClasses defined to represent Objects fall into three categories: those used to define instances, those used to define types for those instances and those used to define data types. 6.3 describes the rules for subtyping and 6.4 the rules for instantiation of the type definitions.

5.2 Base NodeClass

5.2.1 General

The OPC UA Address Space Model defines a Base NodeClass from which all other NodeClasses are derived. The derived NodeClasses represent the various components of the OPC UA Object Model (see 4.2). The Attributes of the Base NodeClass are specified in Table 2. There are no References specified for the Base NodeClass.

Table 2 - Base NodeClass

	Name
	Use
	Data Type
	Description

	Attributes
	
	
	

	
NodeId
	M
	NodeId
	See 5.2.2

	
NodeClass
	M
	NodeClass
	See 5.2.3

	
BrowseName
	M
	QualifiedName
	See 5.2.4

	
DisplayName
	M
	LocalizedText
	See 5.2.5

	
Description
	O
	LocalizedText
	See 5.2.6

	
WriteMask
	O
	UInt32
	See 5.2.7

	
UserWriteMask
	O
	UInt32
	See 5.2.8

	References
	
	
	No References specified for this NodeClass

5.2.2 NodeId

Nodes are unambiguously identified using a constructed identifier called the NodeId. Some servers may accept alternative NodeIds in addition to the canonical NodeId represented in this Attribute. The structure of the NodeId is defined in 8.2.

5.2.3 NodeClass

The NodeClass Attribute identifies the NodeClass of a Node. Its data type is defined in 8.29.

5.2.4 BrowseName

Nodes have a BrowseName Attribute that is used as a non-localised human-readable name when browsing the AddressSpace to create paths out of BrowseNames. The TranslateBrowsePathsToNodeIds Service defined in Part 4 can be used to follow a path constructed of BrowseNames.

A BrowseName should never be used to display the name of a Node. The DisplayName should be used instead for this purpose.

Unlike NodeIds, the BrowseName cannot be used to unambiguously identify a Node. Different Nodes may have the same BrowseName.

8.3 defines the structure of the BrowseName. It contains a namespace and a string. The namespace is provided to make the BrowseName unique in some cases in the context of a Node (e.g. Properties of a Node) although not unique in the context of the server. If different organizations define BrowseNames for Properties, the namespace of the BrowseName provided by the organization makes the BrowseName unique, although different organizations may use the same string having a slightly different meaning.

Servers may often choose to use the same namespace for the NodeId and the BrowseName. However, if they want to provide a standard Property, its BrowseName shall have the namespace of the standards body although the namespace of the NodeId reflects something else, for example the local server.

It is recommended that standard bodies defining standard type definitions use their namespace for the NodeId of the TypeDefinitionNode as well as for the BrowseName of the TypeDefinitionNode.
5.2.5 DisplayName

The DisplayName Attribute contains the localised name of the Node. Clients should use this Attribute if they want to display the name of the Node to the user. They should not use the BrowseName for this purpose. The server may maintain one or more localised representations for each DisplayName. Clients negotiate the locale to be returned when they open a session with the server. Refer to Part 4 for a description of session establishment and locales. 8.5 defines the structure of the DisplayName. The string part of the DisplayName is restricted to 512 characters.
5.2.6 Description

The optional Description Attribute shall explain the meaning of the Node in a localised text using the same mechanisms for localisation as described for the DisplayName in 5.2.5.
5.2.7 WriteMask

The optional WriteMask Attribute exposes the possibilities of a client to write the Attributes of the Node. The WriteMask Attribute does not take any user access rights into account, i.e. although an Attribute is writeable this may be restricted to a certain user / user group.
If the OPC UA server does not have the ability to get the WriteMask information for a specific Attribute from the underlying system, it should state that it is writable. If a write operation is called on the Attribute, the server should transfer this request and return the corresponding StatusCode if such a request is rejected. StatusCodes are defined in Part 4.
The WriteMask Attribute is a 32-bit unsigned integer with the structure defined in Table 3. If the bit is set to 0, it means the Attribute is not writeable, if it is set to 1 it means it is writable. If a Node does not support a specific Attribute, the corresponding bit has to be set to 0.

Table 3 – Bit mask for WriteMask and UserWriteMask

	Field
	Bit
	Description

	AccessLevel
	0
	Indicates if the AccessLevel Attribute is writable.

	ArrayDimensions
	1
	Indicates if the ArrayDimensions Attribute is writable.

	BrowseName
	2
	Indicates if the BrowseName Attribute is writable.

	ContainsNoLoops
	3
	Indicates if the ContainsNoLoops Attribute is writable.

	DataType
	4
	Indicates if the DataType Attribute is writable.

	Description
	5
	Indicates if the Description Attribute is writable.

	DisplayName
	6
	Indicates if the DisplayName Attribute is writable.

	EventNotifier
	7
	Indicates if the EventNotifier Attribute is writable.

	Executable
	8
	Indicates if the Executable Attribute is writable.

	Historizing
	9
	Indicates if the Historizing Attribute is writable.

	InverseName
	10
	Indicates if the InverseName Attribute is writable.

	IsAbstract
	11
	Indicates if the IsAbstract Attribute is writable.

	MinimumSamplingInterval
	12
	Indicates if the MinimumSamplingInterval Attribute is writable.

	NodeClass
	13
	Indicates if the NodeClass Attribute is writable.

	NodeId
	14
	Indicates if the NodeId Attribute is writable.

	Symmetric
	15
	Indicates if the Symmetric Attribute is writable.

	UserAccessLevel
	16
	Indicates if the UserAccessLevel Attribute is writable.

	UserExecutable
	17
	Indicates if the UserExecutable Attribute is writable.

	UserWriteMask
	18
	Indicates if the UserWriteMask Attribute is writable.

	ValueRank
	19
	Indicates if the ValueRank Attribute is writable.

	WriteMask
	20
	Indicates if the WriteMask Attribute is writable.

	ValueForVariableType
	21
	Indicates if the Value Attribute is writable for a VariableType. It does not apply for Variables since this is handled by the AccessLevel and UserAccessLevel Attributes for the Variable. For Variables this bit shall be set to 0.

	Reserved
	22:32
	Reserved for future use. Shall always be zero.

5.2.8 UserWriteMask

The optional UserWriteMask Attribute exposes the possibilities of a client to write the Attributes of the Node taking user access rights into account. It uses the same bit mask as used in the WriteMask Attribute, defined in Table 3.

The UserWriteMask Attribute can only further restrict the WriteMask Attribute, when it is set to not writeable in the general case that applies for every user.
5.3 ReferenceType NodeClass

5.3.1 General

References are defined as instances of ReferenceType Nodes. ReferenceType Nodes are visible in the AddressSpace and are defined using the ReferenceType NodeClass as specified in Table 4. In contrast, a Reference is an inherent part of a Node and no NodeClass is used to represent References.

This specification defines a set of ReferenceTypes provided as an inherent part of the OPC UA Address Space Model. These ReferenceTypes are defined in Clause 7 and their representation in the AddressSpace is defined in Part 5. Servers may also define ReferenceTypes. In addition, Part 4 defines NodeManagement Services that allow clients to add ReferenceTypes to the AddressSpace.

Table 4 – ReferenceType NodeClass

	Name
	Use
	Data Type
	Description

	Attributes
	
	
	

	
Base NodeClass Attributes
	M
	--
	Inherited from the Base NodeClass. See 5.2

	
IsAbstract
	M
	Boolean
	A boolean Attribute with the following values:

TRUE
it is an abstract ReferenceType, i.e. no References of this type shall exist, only of its subtypes.

FALSE
it is not an abstract ReferenceType, i.e. References of this type can exist.

	
Symmetric
	M
	Boolean
	A boolean Attribute with the following values:

TRUE
the meaning of the ReferenceType is the same as seen from both the SourceNode and the TargetNode.

FALSE
the meaning of the ReferenceType as seen from the TargetNode is the inverse of that as seen from the SourceNode.

	
InverseName
	O
	LocalizedText
	The inverse name of the Reference, i.e. the meaning of the ReferenceType as seen from the TargetNode.

	
	
	
	

	References
	
	
	

	
HasProperty
	0..*
	
	Used to identify the Properties (See 5.3.3.2)

	
HasSubtype
	0..*
	
	Used to identify subtypes (See 5.3.3.3)

	
	
	
	

	Standard Properties
	
	
	

	
NodeVersion
	O
	String
	The NodeVersion Property is used to indicate the version of a Node.

The NodeVersion Property is updated each time a Reference is added or deleted to the Node the Property belongs to. Attribute value changes do not cause the NodeVersion to change. Clients may read the NodeVersion Property or subscribe to it to determine when the structure of a Node has changed.

5.3.2 Attributes

The ReferenceType NodeClass inherits the base Attributes from the Base NodeClass defined in 5.2. The inherited BrowseName Attribute is used to specify the meaning of the ReferenceType as seen from the SourceNode. For example, the ReferenceType with the BrowseName “Contains” is used in References that specify that the SourceNode contains the TargetNode. The inherited DisplayName Attribute contains a translation of the BrowseName.
The BrowseName of a ReferenceType shall be unique in a server. It is not allowed that two different ReferenceTypes have the same BrowseName.
The IsAbstract Attribute indicates if the ReferenceType is abstract. Abstract ReferenceTypes can not be instantiated and are used only for organizational reasons, e.g. to specify some general semantics or constrains that are inherited to its subtypes.

The Symmetric Attribute is used to indicate whether or not the meaning of the ReferenceType is the same for both the SourceNode and TargetNode.

If a ReferenceType is symmetric, the InverseName Attribute shall be omitted. Examples of symmetric ReferenceTypes are “Connects To” and “Communicates With”. Both imply the same semantic coming from the SourceNode or the TargetNode. Therefore both directions are considered to be forward References.
If the ReferenceType is non-symmetric and not abstract, the InverseName Attribute shall be set. The InverseName Attribute specifies the meaning of the ReferenceType as seen from the TargetNode. Examples of non-symmetric ReferenceTypes include “Contains” and “Contained In”, and “Receives From” and “Sends To”.

References that use the InverseName, such as “Contained In” References, are referred to as inverse References.

Figure 8 provides examples of symmetric and non-symmetric References and the use of the BrowseName and the InverseName.

[image: image8.emf]

C ontains

This Reference Type provides the type definiti on for all “Contains” and “ContainedIn” R eferences

ContainedIn

CommunicatesWith

CommunicatesWith

“ Device ” “Block” “Block”

Reference Type “Contains”

symm etric = FALSE InverseName = “ContainedIn”

Reference Type “ CommunicatesWith ”

symmetric = TRUE

Figure 8 – Symmetric and Non-Symmetric References

It might not always be possible for servers to instantiate both forward and inverse References for non-symmetric ReferenceTypes as shown in this figure. When they do, the References are referred to as bidirectional. Although not required, it is recommended that all hierarchical References be instantiated as bidirectional to ensure browse connectivity. A bidirectional Reference is modelled as two separate References.

As an example of a unidirectional Reference, it is often the case that a subscriber knows its publisher, but its publisher does not know its subscribers. The subscriber would have a “Subscribes To” Reference to the publisher, without the publisher having the corresponding “Publishes To” inverse References to its subscribers.

The DisplayName and the InverseName are the only standardised places to indicate the semantic of a ReferenceType. There may be more complex semantics associated with a ReferenceType than can be expressed in those Attributes (e.g. the semantic of HasSubtype). This specification does not specify how this semantic should be exposed. However, the Description Attribute can be used for this purpose. This specification does provide a semantic for the ReferenceTypes specified in Clause 7.

A ReferenceType can have constraints restricting its use. For example, it can specify that starting from Node A and only following References of this ReferenceType or one of its subtypes shall never be able to return to A, that is, a “No Loop” constraint.

This specification does not specify how those constraints could or should be made available in the AddressSpace. Nevertheless, for the standard ReferenceTypes, some constraints are specified in Clause 7. This specification does not restrict the kind of constraints valid for a ReferenceType. It can, for example, also affect an ObjectType. The restriction that a ReferenceType can only be used relating Nodes of some NodeClasses with a defined cardinality is a special constraint of a ReferenceType.

5.3.3 References

5.3.3.1 General

HasSubtype References and HasProperty References are the only ReferenceTypes that may be used with ReferenceType Nodes as SourceNode. ReferenceType Nodes shall not be the SourceNode of other types of References.

5.3.3.2 HasProperty References

HasProperty References are used to identify the Properties of a ReferenceType and shall only refer to Nodes of the Variable NodeClass.

The Property NodeVersion is used to indicate the version of the ReferenceType.

There are no additional Properties defined for ReferenceTypes in this document. Additional parts of this multi-part specification may define additional Properties for ReferenceTypes.

5.3.3.3 HasSubtype References

HasSubtype References are used to define subtypes of ReferenceTypes. It is not required to provide the HasSubtype Reference for the supertype, but it is required that the subtype provides the inverse Reference to its supertype. The following rules for subtyping apply:

1. The semantic of a ReferenceType (e.g. “spans a hierarchy”) is inherited to its subtypes and can be refined there (e.g. “spans a special hierarchy”). The DisplayName, and also the InverseName for non-symmetric ReferenceTypes, reflect the specialization.

2. If a ReferenceType specifies some constraints (e.g. “allow no loops”) this is inherited and can only be refined (e.g. inheriting “no loops” could be refined as “shall be a tree – only one parent”) but not lowered (e.g. “allow loops”).

3. The constraints concerning which NodeClasses can be referenced are also inherited and can only be further restricted. That is, if a ReferenceType “A” is not allowed to relate an Object with an ObjectType, this is also true for its subtypes.

4. A ReferenceType shall have exactly one supertype, except for the References ReferenceType defined in 7.2 as the root type of the ReferenceType hierarchy. The ReferenceType hierarchy does not support multiple inheritance.

5.4 View NodeClass

Underlying systems are often large and clients often have an interest in only a specific subset of the data. They do not need, or want, to be burdened with viewing Nodes in the AddressSpace for which they have no interest.

To address this problem, This specification defines the concept of a View. Each View defines a subset of the Nodes in the AddressSpace. The entire AddressSpace is the default View. Each Node in a View may contain only a subset of its References, as defined by the creator of the View. The View Node acts as the root for the Nodes in the View. Views are defined using the View NodeClass, which is specified in Table 5.
All Nodes contained in a View shall be accessible starting from the View Node when browsing in the context of the View. The browse may take several hops, i.e. it is not necessary that all containing Nodes can be browsed directly from the View Node.

A View Node may not only be used as additional entry point into the AddressSpace but as a construct to organize the AddressSpace and thus as the only entry point into a subset of the AddressSpace. Therefore clients shall not ignore View Nodes when exposing the AddressSpace. Simple clients that do not deal with Views for filtering purposes can for example handle a View Node like an Object of type FolderType (see 5.5.3).
Table 5 – View NodeClass

	Name
	Use
	Data Type
	Description

	Attributes
	
	
	

	
Base NodeClass Attributes
	M
	--
	Inherited from the Base NodeClass. See 5.2

	
ContainsNoLoops
	M
	Boolean
	If set to “true” this Attribute indicates that following References in the context of the View contains no loops, i.e. starting from a Node “A” contained in the View and following the forward References in the context of the View Node “A” will not be reached again. It does not specify that there is only one path starting from the View Node to reach a Node contained in the View.

If set to “false” this Attribute indicates that following References in the context of the View may lead to loops.

	
EventNotifier
	M
	Byte
	The EventNotifier Attribute is used to indicate if the Node can be used to subscribe to Events or to read / write historic Events.

The EventNotifier is an 8-bit unsigned integer with the structure defined in the following table:

Field

Bit

Description

SubscribeTo Events

0

Indicates if it can be used to subscribe to Events
(0 means cannot be used to subscribe to Events, 1 means can be used to subscribe to Events).

Reserved

1

Reserved for future use. Shall always be zero.

HistoryRead

2

Indicates if the history of the Events is readable
(0 means not readable, 1 means readable).

HistoryWrite

3

Indicates if the history of the Events is writable
(0 means not writable, 1 means writable).

Reserved

4:7

Reserved for future use. Shall always be zero.

The second two bits also indicate if the history of the Events is available via the OPC UA server.

	
	
	
	

	References
	
	
	

	
HierarchicalReferences
	0..*
	
	Top level Nodes in a View are referenced by hierarchical References (see 7.3).

	
HasProperty
	0..*
	
	HasProperty References identify the Properties of the View.

	
	
	
	

	Standard Properties
	
	
	

	
NodeVersion
	O
	String
	The NodeVersion Property is used to indicate the version of a Node.

The NodeVersion Property is updated each time a Reference is added or deleted to the Node the Property belongs to. Attribute value changes do not cause the NodeVersion to change. Clients may read the NodeVersion Property or subscribe to it to determine when the structure of a Node has changed.

	
ViewVersion
	O
	UInt32
	The version number for the View. When Nodes are added to or removed from a View, the value of the ViewVersion Property is updated. Clients may detect changes to the composition of a View using this Property. The value of the ViewVersion shall always be greater than 0.

The View NodeClass inherits the base Attributes from the Base NodeClass defined in 5.2. It also defines two additional Attributes.

The mandatory ContainsNoLoops Attribute is set to false if the server is not able to identify if the View contains loops or not.

The mandatory EventNotifier Attribute identifies if the View can be used to subscribe to Events that either occur in the content of the View or as ModelChangeEvents of the content of the View or to read / write the history of the Events. A View that supports Events shall provide all Events that occur in any Object used as EventNotifier that is part of the content of the View. In addition, it shall provide all ModelChangeEvents that occur in the context of the View.

To avoid recursion, i.e. getting all Events of the Server, the Server Object defined in Part 5 shall never be part of any View since it provides all Events of the Server.
Views are defined by the server. The browsing and querying Services defined in Part 4 expect the NodeId of a View Node to provide these Services in the context of the View.

HasProperty References are used to identify the Properties of a View. The Property NodeVersion is used to indicate the version of the View Node. The ViewVersion Property indicates the version of the content of the View. In contrast to the NodeVersion, the ViewVersion Property is updated even if Nodes not directly referenced by the View Node are added to or deleted from the View. This Property is optional because it might not be possible for servers to detect changes in the View contents. Servers may also generate a ModelChangeEvent, described in 9.30, if Nodes are added to or deleted from the View. There are no additional Properties defined for Views in this document. Additional parts of this multi-part specification may define additional Properties for Views.

Views can be the SourceNode of any hierarchical Reference. They shall not be the SourceNode of any non-hierarchical Reference.

5.5 Objects

5.5.1 Object NodeClass

Objects are used to represent systems, system components, real-world objects and software objects. Objects are defined using the Object NodeClass, specified in Table 6.

Table 6 – Object NodeClass

	Name
	Use
	Data Type
	Description

	Attributes
	
	
	

	
Base NodeClass Attributes
	M
	--
	Inherited from the Base NodeClass. See 5.2

	
EventNotifier
	M
	Byte
	The EventNotifier Attribute is used to indicate if the Node can be used to subscribe to Events or the read / write historic Events.

The EventNotifier is an 8-bit unsigned integer with the structure defined in the following table:

Field

Bit

Description

SubscribeTo Events

0

Indicates if it can be used to subscribe to Events
(0 means cannot be used to subscribe to Events, 1 means can be used to subscribe to Events).

Reserved

1

Reserved for future use. shall always be zero.

HistoryRead

2

Indicates if the history of the Events is readable
(0 means not readable, 1 means readable).

HistoryWrite

3

Indicates if the history of the Events is writable
(0 means not writable, 1 means writable).

Reserved

4:7

Reserved for future use. Shall always be zero.

The second two bits also indicate if the history of the Events is available via the OPC UA server.

	
	
	
	

	References
	
	
	

	
HasComponent
	0..*
	
	HasComponent References identify the DataVariables, the Methods and Objects contained in the Object.

	
HasProperty
	0..*
	
	HasProperty References identify the Properties of the Object.

	
HasModellingRule
	0..1
	
	Objects can point to at most one ModellingRule Object using a HasModellingRule Reference (see 6.4.4 for details on ModellingRules).

	
HasTypeDefinition
	1
	
	The HasTypeDefinition Reference points to the type definition of the Object. Each Object shall have exactly one type definition and therefore be the SourceNode of exactly one HasTypeDefinition Reference pointing to an ObjectType. See 4.5 for a description of type definitions.

	
HasModelParent
	0..1
	
	The HasModelParent Reference points to the ModelParent of the Object (see 6.6 for details on ModelParents).

	
HasEventSource
	0..*
	
	The HasEventSource Reference points to event sources of the Object. References of this type can only be used for Objects having their “SubscribeToEvents” bit set in the EventNotifier Attribute. See 7.18 for details.

	
HasNotifier
	0..*
	
	The HasNotifier Reference points to notifiers of the Object. References of this type can only be used for Objects having their “SubscribeToEvents” bit set in the EventNotifier Attribute. See 7.19 for details.

	
Organizes
	0..*
	
	This Reference should be used only for Objects of the ObjectType FolderType (see 5.5.3).

	
HasDescription
	0..1
	
	This Reference shall be used only for Objects of the ObjectType DataTypeEncodingType (see 5.8.4).

	
<other References>
	0..*
	
	Objects may contain other References.

	
	
	
	

	Standard Properties
	
	
	

	
NodeVersion
	O
	String
	The NodeVersion Property is used to indicate the version of a Node.

The NodeVersion Property is updated each time a Reference is added or deleted to the Node the Property belongs to. Attribute value changes do not cause the NodeVersion to change. Clients may read the NodeVersion Property or subscribe to it to determine when the structure of a Node has changed.

	
Icon
	O
	Image
	The Icon Property provides an image that can be used by clients when displaying the Node. It is expected that the Icon Property contains a relatively small image.

	
NamingRule
	O
	NamingRuleType
	The NamingRule Property defines the NamingRule of a ModellingRule (see 6.4.4.2.1 for details). This Property shall only be used for Objects of the type ModellingRuleType defined in 6.4.4.

The Object NodeClass inherits the base Attributes from the Base NodeClass defined in 5.2.

The mandatory EventNotifier Attribute identifies whether the Object can be used to subscribe to Events or to read and write the history of the Events.

The Object NodeClass uses the HasComponent Reference to define the DataVariables, Objects and Methods of an Object.

It uses the HasProperty Reference to define the Properties of an Object. The Property NodeVersion is used to indicate the version of the Object. The Property Icon provides an icon of the Object. The Property NamingRule defines the NamingRule of a ModellingRule and shall only be applied to Objects of type ModellingRuleType. There are no additional Properties defined for Objects in this document. Additional parts of this multi-part specification may define additional Properties for Objects.

To specify its ModellingRule, an Object can use at most one HasModellingRule Reference pointing to a ModellingRule Object. ModellingRules are defined in 6.4.4.
An Object shall use at most one HasModelParent Reference to specify its ModelParent (see 6.6 for details).
HasNotifier and HasEventSource References are used to provide information about eventing and can only be applied to Objects used as event notifiers. Details are defined in 7.18 and 7.19.

The HasTypeDefinition Reference points to the ObjectType used as type definition of the Object.

Objects may use any additional References to define relationships to other Nodes. No restrictions are placed on the types of References used or on the NodeClasses of the Nodes that may be referenced. However, restrictions may be defined by the ReferenceType excluding its use for Objects. Standard ReferenceTypes are described in Clause 7.

If the Object is used as InstanceDeclaration (see 4.5) all Nodes referenced with hierarchical References in forward direction shall have unique BrowseNames in the context of this Object.

If the Object is created based on an InstanceDeclaration, it shall have the same BrowseName as its InstanceDeclaration.

5.5.2 ObjectType NodeClass

ObjectTypes provide definitions for Objects. ObjectTypes are defined using the ObjectType NodeClass, which is specified in Table 7.

Table 7 – ObjectType NodeClass

	Name
	Use
	Data Type
	Description

	Attributes
	
	
	

	
Base NodeClass Attributes
	M
	--
	Inherited from the Base NodeClass. See 5.2

	
IsAbstract
	M
	Boolean
	A boolean Attribute with the following values:

TRUE
it is an abstract ObjectType, i.e. no Objects of this type shall exist, only of its subtypes.

FALSE
it is not an abstract ObjectType, i.e. Objects of this type can exist.

	
	
	
	

	References
	
	
	

	
HasComponent
	0..*
	
	HasComponent References identify the DataVariables, the Methods, and Objects contained in the ObjectType.

If and how the referenced Nodes are instantiated when an Object of this type is instantiated, is specified in 6.4.

	
HasProperty
	0..*
	
	HasProperty References identify the Properties of the ObjectType. If and how the Properties are instantiated when an Object of this type is instantiated, is specified in 6.4.

	
HasSubtype
	0..*
	
	HasSubtype References identify ObjectTypes that are subtypes of this type. The inverse SubtypeOf Reference identifies the parent type of this type.

	
GeneratesEvent
	0..*
	
	GeneratesEvent References identify the type of Events instances of this type may generate.

	
<other References>
	0..*
	
	ObjectTypes may contain other References that can be instantiated by Objects defined by this ObjectType.

	
	
	
	

	Standard Properties
	
	
	

	
NodeVersion
	O
	String
	The NodeVersion Property is used to indicate the version of a Node.

The NodeVersion Property is updated each time a Reference is added or deleted to the Node the Property belongs to. Attribute value changes do not cause the NodeVersion to change. Clients may read the NodeVersion Property or subscribe to it to determine when the structure of a Node has changed.

	
Icon
	O
	Image
	The Icon Property provides an image that can be used by clients when displaying the Node. It is expected that the Icon Property contains a relatively small image.

The ObjectType NodeClass inherits the base Attributes from the Base NodeClass defined in 5.2. The additional IsAbstract Attribute indicates if the ObjectType is abstract or not.

The ObjectType NodeClass uses the HasComponent References to define the DataVariables, Objects, and Methods for it.

The HasProperty Reference is used to identify the Properties. The Property NodeVersion is used to indicate the version of the ObjectType. The Property Icon provides an icon of the ObjectType. There are no additional Properties defined for ObjectTypes in this document. Additional parts of this multi-part specification may define additional Properties for ObjectTypes.

HasSubtype References are used to subtype ObjectTypes. ObjectType subtypes inherit the general semantics from the parent type. The general rules for subtyping apply as defined in Clause 6. It is not required to provide the HasSubtype Reference for the supertype, but it is required that the subtype provides the inverse Reference to its supertype.

GeneratesEvent References identify the type of Events that instances of the ObjectType may generate. These Objects may be the source of an Event of the specified type or one of its subtypes. Servers should make GeneratesEvent References bidirectional References. However, it is allowed to be unidirectional when the server is not able to expose the inverse direction pointing from the EventType to each ObjectType supporting the EventType. Note that the EventNotifier Attribute of an Object and the GeneratesEvent References of its ObjectType are completely unrelated. Objects that can generate Events might not be used as Objects to which clients subscribe to get the corresponding Event notifications.

GeneratesEvent References are optional, i.e. Objects may generate Events of an EventType that is not exposed by its ObjectType.

ObjectTypes may use any additional References to define relationships to other Nodes. No restrictions are placed on the types of References used or on the NodeClasses of the Nodes that may be referenced. However, restrictions may be defined by the ReferenceType excluding its use for ObjectTypes. Standard ReferenceTypes are described in Clause 7.

All Nodes referenced with hierarchical References shall have unique BrowseNames in the context of an ObjectType (see 4.5).

5.5.3 Standard ObjectType FolderType

The ObjectType FolderType is formally defined in Part 5. Its purpose is to provide Objects that have no other semantic than organizing of the AddressSpace. A special ReferenceType is used for those Folder Objects, the Organizes ReferenceType. The SourceNode of such a Reference should always be a View or an Object of the ObjectType FolderType; the TargetNode can be of any NodeClass. Organizes References can be used in any combination with HasChild References (HasComponent, HasProperty, etc.; see 7.5) and do not prevent loops. Thus, they can be used to span multiple hierarchies.
5.5.4 Client-side creation of Objects of an ObjectType

Objects are always based on an ObjectType, i.e. they have a HasTypeDefinition Reference pointing to its ObjectType.

Clients can create Objects using the AddNodes Service defined in Part 4. The Service requires specifying the TypeDefinitionNode of the Object. An Object created by the AddNodes Service contains all components defined by its ObjectType dependent on the ModellingRules specified for the components. However, the Server may add additional components and References to the Object and its components that are not defined by the ObjectType. This behaviour is server dependent. The ObjectType only specifies the minimum set of components that shall exist for each Object of an ObjectType.

In addition to the AddNodes Service ObjectTypes may have a special Method with the BrowseName “Create”. This Method is used to create an Object of this ObjectType. This Method may be useful for the creation of Objects where the semantic of the creation should differ from the default behaviour expected in the context of the AddNodes Service. For example, the values should directly differ from the default values or additional Objects should be added, etc. The input- and output arguments of this Method depend on the ObjectType; the only commonality is the BrowseName identifying that this Method will create an Object based on the ObjectType. Servers should not provide a Method on an ObjectType with the BrowseName “Create” for any other purpose than creating Objects of the ObjectType.
5.6 Variables

5.6.1 General

Two types of Variables are defined, Properties and DataVariables. Although they differ in the way they are used as described in 4.4 and have different constraints described in the following subclauses, they use the same NodeClass described in 5.6.2. The constraints of Properties based on this NodeClass are defined in 5.6.3, the constraints of DataVariables in 5.6.4.

5.6.2 Variable NodeClass

Variables are used to represent values which may be simple or complex. Variables are defined by VariableTypes, specified in 5.6.5.

Variables are always defined as Properties or DataVariables of other Nodes in the AddressSpace. They are never defined by themselves. A Variable is always part of at least one other Node, but may be related to any number of other Nodes. Variables are defined using the Variable NodeClass, specified in Table 8.
Table 8 – Variable NodeClass

	Name
	Use
	Data Type
	Description

	Attributes
	
	
	

	
Base NodeClass Attributes
	M
	--
	Inherited from the Base NodeClass. See 5.2

	
Value
	M
	Defined by the DataType Attribute
	The most recent value of the Variable that the server has. Its data type is defined by the DataType Attribute. It is the only Attribute that does not have a data type associated with it. This allows all Variables to have a value defined by the same Value Attribute.

	
DataType
	M
	NodeId
	NodeId of the DataType definition for the Value Attribute. Standard DataTypes are defined in Clause 8.

	
ValueRank
	M
	Int32
	This Attribute indicates whether the Value Attribute of the Variable is an array and how many dimensions the array has.
It may have the following values:

n>1: the Value is an array with the specified number of dimensions.

OneDimension (1): The value is an array with one dimension.

OneOrMoreDimensions (0): The value is an array with one or more dimensions.

Scalar (-1): The value is not an array.

Any (-2): The value can be a scalar or an array with any number of dimensions.

ScalarOrOneDimension (-3): The value can be a scalar or a one dimensional array.

	
ArrayDimensions
	O
	UInt32[]
	This Attribute specifies the length of each dimension for an array value. The Attribute is intended to describe the capability of the Variable, not the current size.
The number of elements shall be equal to the value of the ValueRank Attribute. Shall be null if ValueRank <= 0.

A value of 0 for an individual dimension indicates that the dimension has a variable length.
For example, if a Variable is defined by the following C array:

Int32 myArray[346];

then this Variable’s DataType would point to an Int32, the Variable’s ValueRank has the value 1 and the ArrayDimensions is an array with one entry having the value 346.

	
AccessLevel
	M
	Byte
	The AccessLevel Attribute is used to indicate how the Value of a Variable can be accessed (read/write) and if it contains current and/or historic data. The AccessLevel does not take any user access rights into account, i.e. although the Variable is writeable this may be restricted to a certain user / user group.

The AccessLevel is an 8-bit unsigned integer with the structure defined in the following table:

Field

Bit

Description

CurrentRead

0

Indicates if the current value is readable
(0 means not readable, 1 means readable).

CurrentWrite

1

Indicates if the current value is writable
(0 means not writable, 1 means writable).

HistoryRead

2

Indicates if the history of the value is readable
(0 means not readable, 1 means readable).

HistoryWrite

3

Indicates if the history of the value is writable (0 means not writable, 1 means writable).

SemanticChange
4
Indicates if the Variable used as Property generates SemanticChangeEvents (see 9.31).
Reserved

5:7

Reserved for future use. Shall always be zero.

The first two bits also indicate if a current value of this Variable is available and the second two bits indicates if the history of the Variable is available via the OPC UA server.

	
UserAccessLevel
	M
	Byte
	The UserAccessLevel Attribute is used to indicate how the Value of a Variable can be accessed (read/write) and if it contains current or historic data taking user access rights into account.

The UserAccessLevel is an 8-bit unsigned integer with the structure defined in the following table:

Field

Bit

Description

CurrentRead

0

Indicates if the current value is readable
(0 means not readable, 1 means readable).

CurrentWrite

1

Indicates if the current value is writable
(0 means not writable, 1 means writable).

HistoryRead

2

Indicates if the history of the value is readable
(0 means not readable, 1 means readable).

HistoryWrite

3

Indicates if the history of the value is writable (0 means not writable, 1 means writable).

Reserved

4:7

Reserved for future use. Shall always be zero.

The first two bits also indicate if a current value of this Variable is available and the second two bits indicate if the history of the Variable is available via the OPC UA server.

	
MinimumSamplingInterval
	O
	Duration
	The MinimumSamplingInterval Attribute indicates how “current” the Value of the Variable will be kept. It specifies (in milliseconds) how fast the server can reasonably sample the value for changes (see Part 4 for a detailed description of sampling interval).

A MinimumSamplingInterval of 0 indicates that the server is to monitor the item continuously. A MinimumSamplingInterval of -1 means indeterminate.

	
Historizing
	M
	Boolean
	The Historizing Attribute indicates whether the Server is actively collecting data for the history of the Variable. This differs from the AccessLevel Attribute which identifies if the Variable has any historical data. A value of TRUE indicates that the Server is actively collecting data. A value of FALSE indicates the Server is not actively collecting data. Default value is FALSE.

	
	
	
	

	References
	
	
	

	
HasModellingRule
	0..1
	
	Variables can point to at most one ModellingRule Object using a HasModellingRule Reference (see 6.4.4 for details on ModellingRules).

	
HasProperty
	0..*
	
	HasProperty References are used to identify the Properties of a DataVariable.

Properties are not allowed to be the SourceNode of HasProperty References.

	
HasComponent
	0..*
	
	HasComponent References are used by complex DataVariables to identify their composed DataVariables.

Properties are not allowed to use this Reference.

	
HasTypeDefinition
	1
	
	The HasTypeDefinition Reference points to the type definition of the Variable. Each Variable shall have exactly one type definition and therefore be the SourceNode of exactly one HasTypeDefinition Reference pointing to a VariableType. See 4.5 for a description of type definitions.

	
HasModelParent
	0..1
	
	The HasModelParent Reference points to the ModelParent of the Variable (see 6.6 for details on ModelParents).

	
<other References>
	0..*
	
	Data Variables may be the SourceNode of any other References.

Properties may only be the SourceNode of any non-hierarchical Reference.

	
	
	
	

	Standard Properties
	
	
	

	
NodeVersion
	O
	String
	The NodeVersion Property is used to indicate the version of a DataVariable. It does not apply to Properties.

The NodeVersion Property is updated each time a Reference is added or deleted to the Node the Property belongs to. Attribute value changes except for the DataType Attribute do not cause the NodeVersion to change. Clients may read the NodeVersion Property or subscribe to it to determine when the structure of a Node has changed.
Although the relationship of a Variable to its DataType is not modelled using References, changes to the DataType Attribute of a Variable lead to an update of the NodeVersion Property.

	
LocalTime
	O
	TimeZone​Info
	The LocalTime Property is only used for DataVariables. It does not apply to Properties.

This Property is a structure containing the Offset and the DaylightSavingInOffset flag. The Offset specifies the time difference (in minutes) between the SourceTimestamp (UTC) associated with the value and the time at the location in which the value was obtained. The SourceTimestamp is defined in Part 4.

If DaylightSavingInOffset is TRUE, then Standard/Daylight savings time (DST) at the originating location is in effect and Offset includes the DST correction. If FALSE then the Offset does not include DST correction and DST may or may not have been in effect.

	
DataTypeVersion
	O
	String
	Only used for Variables of the VariableType DataTypeDictionaryType and DataTypeDescriptionType as described in 5.8.

	
DictionaryFragment
	O
	ByteString
	Only used for Variables of the VariableType DataTypeDescriptionType as described in 5.8.

	
AllowNulls
	O
	Boolean
	The AllowNulls Property is only used for DataVariables. It does not apply to Properties.

This Property specifies if a NULL value is allowed for the Value Attribute of the DataVariable. If it is set to true, the server may return NULL values and accept writing of NULL values. If it is set to false, the server shall never return a NULL value and shall reject any request writing a NULL value.

If this Property is not provided, it is server-specific if NULL values are allowed or not.

The Variable NodeClass inherits the base Attributes from the Base NodeClass defined in 5.2.

The Variable NodeClass also defines a set of Attributes that describe the Variable’s Runtime value. The Value Attribute represents the Variable value. The DataType, ValueRank and ArrayDimensions Attributes provide the capability to describe simple and complex values.

The AccessLevel Attribute indicates the accessibility of the Value of a Variable not taking user access rights into account. If the OPC UA server does not have the ability to get the AccessLevel information from the underlying system, it should state that it is read and writable. If a read or write operation is called on the Variable, the server should transfer this request and return the corresponding StatusCode if such a request is rejected. StatusCodes are defined in Part 4.
The SemanticChange bit of the AccessLevel Attribute shall be set when the Property describes the semantic of the Node that owns the Property and changes of the Property value will generate SemanticChangeEvents. For example, a Property describing the engineering unit of a DataVariable has the bit set, whereas a Property containing an Icon of the DataVariable will not. This behaviour is exactly the same as described by the SemanticsChanged bit of the StatusCode defined in Part 4. However, if you subscribe to a Variable you should look at the StatusCode to identify if the semantic has changed in order to receive this information before you are processing the value of the Variable.
The UserAccessLevel Attribute indicates the accessibility of the Value of a Variable taking user access rights into account. If the OPC UA server does not have the ability to get any user access rights related information from the underlying system, it should use the same bit mask as used in the AccessLevel Attribute. The UserAccessLevel Attribute can restrict the accessibility indicated by the AccessLevel Attribute, but not exceed it.

The MinimumSamplingInterval Attribute specifies how fast the server can reasonably sample the value for changes. The accuracy of this value (the ability of the server to attain “best case” performance) can be greatly affected by system load and other factors.
The Historizing Attribute indicates whether the Server is actively collecting data for the history of the Variable. See Part 11 for details on historizing Variables.
Clients may read or write Variable values, or monitor them for value changes, as specified in Part 4. Part 8 defines additional rules when using the Services for automation data.

To specify its ModellingRule, a Variable can use at most one HasModellingRule Reference pointing to a ModellingRule Object. ModellingRules are defined in 6.4.4.
A Variable shall use at most one HasModelParent Reference to specify its ModelParent (see 6.6 for details).
If the Variable is created based on an InstanceDeclaration (see 4.5) it shall have the same BrowseName as its InstanceDeclaration.

The other References are described separately for Properties and DataVariables in the following subclauses.

5.6.3 Properties
Properties are used to define the characteristics of Nodes. Properties are defined using the Variable NodeClass, specified in Table 8. However, they restrict their use.

Properties are the leaf of any hierarchy; therefore they shall not be the SourceNode of any hierarchical References. This includes the HasComponent or HasProperty Reference, that is, Properties do not contain Properties and cannot expose their complex structure. However, they may be the SourceNode of any non-hierarchical References.

The HasTypeDefinition Reference points to the VariableType of the Property. Since Properties are uniquely identified by their BrowseName, all Properties shall point to the PropertyType defined in Part 5.

Properties shall always be defined in the context of another Node and shall be the TargetNode of at least one HasProperty Reference. To distinguish them from DataVariables, they shall not be the TargetNode of any HasComponent Reference. Thus, a HasProperty Reference pointing to a Variable Node defines this Node as a Property.

The BrowseName of a Property is always unique in the context of a Node. It is not permitted for a Node to refer to two Variables using HasProperty References having the same BrowseName.

5.6.4 DataVariable

DataVariables represent the content of an Object. DataVariables are defined using the Variable NodeClass, specified in Table 8.

DataVariables identify their Properties using HasProperty References. Complex DataVariables use HasComponent References to expose their component DataVariables.

The Property NodeVersion indicates the version of the DataVariable. The Property LocalTime indicates the difference between the SourceTimestamp of the value and the standard time at the location in which the value was obtained. The Property DataTypeVersion is used only for DataTypeDictionaries and DataTypeDescriptions as defined in 5.8. The Standard Property DictionaryFragment is used only for DataTypeDescriptions as defined in 5.8. The Property AllowNulls indicates if NULL values are allowed for the Value Attribute. There are no additional Properties defined for DataVariables in this part of this document. Additional parts of this multi-part specification may define additional Properties for DataVariables. Part 8 defines a set of Properties that can be used for DataVariables.

DataVariables may use additional References to define relationships to other Nodes. No restrictions are placed on the types of References used or on the NodeClasses of the Nodes that may be referenced. However, restrictions may be defined by the ReferenceType excluding its use for DataVariables. Standard ReferenceTypes are described in Clause 7.

A DataVariable is intended to be defined in the context of an Object. However, complex DataVariables may expose other DataVariables, and ObjectTypes and complex VariableTypes may also contain DataVariables. Therefore each DataVariable shall be the TargetNode of at least one HasComponent Reference coming from an Object, an ObjectType, a DataVariable or a VariableType. DataVariables shall not be the TargetNode of any HasProperty References. Therefore, a HasComponent Reference pointing to a Variable Node identifies it as a DataVariable.

The HasTypeDefinition Reference points to the VariableType used as type definition of the DataVariable.

If the DataVariable is used as InstanceDeclaration (see 4.5) all Nodes referenced with hierarchical References in forward direction shall have unique BrowseNames in the context of this DataVariable.

5.6.5 VariableType NodeClass

VariableTypes are used to provide type definitions for Variables. VariableTypes are defined using the VariableType NodeClass, specified in Table 9.

Table 9 – VariableType NodeClass

	Name
	Use
	Data Type
	Description

	Attributes
	
	
	

	
Base NodeClass Attributes
	M
	--
	Inherited from the Base NodeClass. See 5.2

	
Value
	O
	Defined by the DataType attribute
	The default Value for instances of this type.

	
DataType
	M
	NodeId
	NodeId of the data type definition for instances of this type.

	
ValueRank
	M
	Int32
	This Attribute indicates whether the Value Attribute of the VariableType is an array and how many dimensions the array has.
It may have the following values:

n>1: the Value is an array with the specified number of dimensions.

OneDimension (1): The value is an array with one dimension.

OneOrMoreDimensions (0): The value is an array with one or more dimensions.

Scalar (-1): The value is not an array.

Any (-2): The value can be a scalar or an array with any number of dimensions.

ScalarOrOneDimension (-3): The value can be a scalar or a one dimensional array.

	
ArrayDimensions
	O
	UInt32[]
	This Attribute specifies the length of each dimension for an array value. The Attribute is intended to describe the capability of the VariableType, not the current size.
The number of elements shall be equal to the value of the ValueRank Attribute. Shall be null if ValueRank <= 0.

A value of 0 for an individual dimension indicates that the dimension has a variable length.
For example, if a VariableType is defined by the following C array:

Int32 myArray[346];

then this VariableType’s DataType would point to an Int32, the VariableType’s ValueRank has the value 1 and the ArrayDimensions is an array with one entry having the value 346.

	
IsAbstract
	M
	Boolean
	A boolean Attribute with the following values:

TRUE
it is an abstract VariableType, i.e. no Variable of this type shall exist, only of its subtypes.

FALSE
it is not an abstract VariableType, i.e. Variables of this type can exist.

	
	
	
	

	References
	
	
	

	
HasProperty
	0..*
	
	HasProperty References are used to identify the Properties of the VariableType. The referenced Nodes may be instantiated by the instances of this type, depending on the ModellingRules defined in 6.4.4.

	
HasComponent
	0..*
	
	HasComponent References are used for complex VariableTypes to identify their containing DataVariables. Complex VariableTypes can only be used for DataVariables. The referenced Nodes may be instantiated by the instances of this type, depending on the ModellingRules defined in 6.4.4.

	
HasSubtype
	0..*
	
	HasSubtype References identify VariableTypes that are subtypes of this type. The inverse subtype of Reference identifies the parent type of this type.

	
GeneratesEvent
	0..*
	
	GeneratesEvent References identify the type of Events instances of this type may generate.

	
<other References>
	0..*
	
	VariableTypes may contain other References that can be instantiated by Variables defined by this VariableType. ModellingRules are defined in 6.4.4.

	
	
	
	

	Standard Properties
	
	
	

	
NodeVersion
	O
	String
	The NodeVersion Property is used to indicate the version of a Node.

The NodeVersion Property is updated each time a Reference is added or deleted to the Node the Property belongs to. Attribute value changes except for the DataType Attribute do not cause the NodeVersion to change. Clients may read the NodeVersion Property or subscribe to it to determine when the structure of a Node has changed.
Although the relationship of a VariableType to its DataType is not modelled using References, changes to the DataType Attribute of a VariableType lead to an update of the NodeVersion Property.

The VariableType NodeClass inherits the base Attributes from the Base NodeClass defined in 5.2. The VariableType NodeClass also defines a set of Attributes that describe the default or initial value of its instance Variables. The Value Attribute represents the default value. The DataType, ValueRank and ArrayDimensions Attributes provide the capability to describe simple and complex values. The IsAbstract Attribute defines if the type can be directly instantiated.

The VariableType NodeClass uses HasProperty References to define the Properties and HasComponent References to define DataVariables. Whether they are instantiated depends on the ModellingRules defined in 6.4.4.

The Property NodeVersion indicates the version of the VariableType. There are no additional Properties defined for VariableTypes in this document. Additional parts of this multi-part specification may define additional Properties for VariableTypes. Part 8 defines a set of Properties that can be used for VariableTypes.

HasSubtype References are used to subtype VariableTypes. VariableType subtypes inherit the general semantics from the parent type. The general rules for subtyping are defined in Clause 6. It is not required to provide the HasSubtype Reference for the supertype, but it is required that the subtype provides the inverse Reference to its supertype.

GeneratesEvent References identify that Variables of the VariableType may be the source of an Event of the specified EventType or one of its subtypes. Servers should make GeneratesEvent References bidirectional References. However, it is allowed to be unidirectional when the server is not able to expose the inverse direction pointing from the EventType to each VariableType supporting the EventType.
GeneratesEvent References are optional, i.e. Variables may generate Events of an EventType that is not exposed by its VariableType.

VariableTypes may use any additional References to define relationships to other Nodes. No restrictions are placed on the types of References used or on the NodeClasses of the Nodes that may be referenced. However, restrictions may be defined by the ReferenceType excluding its use for VariableTypes. Standard ReferenceTypes are described in Clause 7.

All Nodes referenced with hierarchical References shall have unique BrowseNames in the context of the VariableType (see 4.5).
5.6.6 Client-side creation of Variables of an VariableType

Variables are always based on a VariableType, i.e. they have a HasTypeDefinition Reference pointing to its VariableType.

Clients can create Variables using the AddNodes Service defined in Part 4. The Service requires specifying the TypeDefinitionNode of the Variable. A Variable created by the AddNodes Service contains all components defined by its VariableType dependent on the ModellingRules specified for the components. However, the Server may add additional components and References to the Variable and its components that are not defined by the VariableType. This behaviour is server dependent. The VariableType only specifies the minimum set of components that shall exist for each Variable of a VariableType.
5.7 Method NodeClass

Methods define callable functions. Methods are invoked using the Call Service defined in Part 4. Method invocations are not represented in the AddressSpace. Method invocations always run to completion and always return responses when complete. Methods are defined using the Method NodeClass, specified in Table 10.
Table 10 – Method NodeClass

	Name
	Use
	Data Type
	Description

	Attributes
	
	
	

	
Base NodeClass Attributes
	M
	--
	Inherited from the Base NodeClass. See 5.2

	
Executable
	M
	Boolean
	The Executable Attribute indicates if the Method is currently executable (“False” means not executable, “True” means executable).

The Executable Attribute does not take any user access rights into account, i.e. although the Method is executable this may be restricted to a certain user / user group.

	
UserExecutable
	M
	Boolean
	The UserExecutable Attribute indicates if the Method is currently executable taking user access rights into account (“False” means not executable, “True” means executable).

	
	
	
	

	References
	
	
	

	
HasProperty
	0..*
	
	HasProperty References identify the Properties for the Method.

	
HasModellingRule
	0..1
	
	Methods can point to at most one ModellingRule Object using a HasModellingRule Reference (see 6.4.4 for details on ModellingRules).

	
HasModelParent
	0..1
	
	The HasModelParent Reference points to the ModelParent of the Method (see 6.6 for details on ModelParents).

	
GeneratesEvent
	0..*
	
	GeneratesEvent References identify the type of Events that may be generated whenever the Method is called.

	
AlwaysGeneratesEvent
	0..*
	
	AlwaysGeneratesEvent References identify the type of Events that shall be generated whenever the Method is called.

	
<other References>
	0..*
	
	Methods may contain other References.

	
	
	
	

	Standard Properties
	
	
	

	
NodeVersion
	O
	String
	The NodeVersion Property is used to indicate the version of a Node.

The NodeVersion Property is updated each time a Reference is added or deleted to the Node the Property belongs to. Attribute value changes do not cause the NodeVersion to change. Clients may read the NodeVersion Property or subscribe to it to determine when the structure of a Node has changed.

	
InputArguments
	O
	Argument[]
	The InputArguments Property is used to specify the arguments that shall be used by a client when calling the Method.

	
OutputArguments
	O
	Argument[]
	The OutputArguments Property specifies the result returned from the Method call.

The Method NodeClass inherits the base Attributes from the Base NodeClass defined in 5.2. The Method NodeClass defines no additional Attributes.

The Executable Attribute indicates whether the Method is executable, not taking user access rights into account. If the OPC UA server cannot get the Executable information from the underlying system, it should state that it is executable. If a Method is called, the server should transfer this request and return the corresponding StatusCode if such a request is rejected. StatusCodes are defined in Part 4.

The UserExecutable Attribute indicates whether the Method is executable, taking user access rights into account. If the OPC UA server cannot get any user rights related information from the underlying system, it should use the same value as used in the Executable Attribute. The UserExecutable Attribute can be set to “False”, even if the Executable Attribute is set to “True”, but it shall be set to “False” if the Executable Attribute is set to “False”.

Properties may be defined for Methods using HasProperty References. The Properties InputArguments and OutputArguments specify the input arguments and output arguments of the Method. Both contain an array of the DataType Argument as specified in 8.6. An empty array a Property that is not provided indicates that there are no input arguments or output arguments for the Method. The Property NodeVersion indicates the version of the Method. There are no additional Properties defined for Methods in this document. Additional parts of this multi-part specification may define additional Properties for Methods.

To specify its ModellingRule, a Method can use at most one HasModellingRule Reference pointing to a ModellingRule Object. ModellingRules are defined in 6.4.4.
A Method shall use at most one HasModelParent Reference to specify its ModelParent (see 6.6 for details).

GeneratesEvent References identify that Methods may generate an Event of the specified EventType or one of its subtypes for every call of the Method. A Server may generate one Event for each referenced EventType when a Method is successfully called.

AlwaysGeneratesEvent References identify that Methods will generate an Event of the specified EventType or one of its subtypes for every call of the Method. A Server shall always generate one Event for each referenced EventType when a Method is successfully called.

Servers should make GeneratesEvent References bidirectional References. However, it is allowed to be unidirectional when the server is not able to expose the inverse direction pointing from the EventType to each Method generating the EventType.
GeneratesEvent References are optional, i.e. the call of a Method may produce Events of an EventType that is not referenced with a GeneratesEvent Reference by the Method.

Methods may use additional References to define relationships to other Nodes. No restrictions are placed on the types of References used or on the NodeClasses of the Nodes that may be referenced. However, restrictions may be defined by the ReferenceType excluding its use for Methods. Standard ReferenceTypes are described in Clause 7.

A Method shall always be the TargetNode of at least one HasComponent Reference. The SourceNode of these HasComponent References shall be an Object or an ObjectType. If a Method is called, the NodeId of one of those Nodes shall be put into the Call Service defined in Part 4 as parameter to detect the context of the Method operation.
If the Method is used as InstanceDeclaration (see 4.5) all Nodes referenced with hierarchical References in forward direction shall have unique BrowseNames in the context of this Method.

5.8 DataTypes

5.8.1 DataType Model

The DataType Model is used to define simple and complex data types. Data types are used to describe the structure of the Value Attribute of Variables and their VariableTypes. Therefore each Variable and VariableType is pointing with its DataType Attribute to a Node of the DataType NodeClass as shown Figure 9.

[image: image9.wmf]

VariableT

ypes

 define the

DataT

ype

for their

V

alue

 Attribute

V

ariables

 defined by a

VariableT

ype

point to the same

DataT

ype

 as its

VariableT

ype

or a subtype of it

Variable

Type

Variable

Data

Type

Figure 9 – Variables, VariableTypes and their DataTypes

In many cases, the NodeId of the DataType Node – the DataTypeId – will be well-known to clients and servers. Clause 8 defines DataTypes and Part 6 defines their DataTypeIds. In addition, other organizations may define DataTypes that are well-known in the industry. Well-known DataTypeIds provide for commonality across OPC UA servers and allow clients to interpret values without having to read the type description from the server. Therefore, servers may use well-known DataTypeIds without representing the corresponding DataType Nodes in their AddressSpaces.

In other cases, DataTypes and their corresponding DataTypeIds may be vendor-defined. Servers should attempt to expose the DataType Nodes and the information about the structure of those DataTypes for clients to read, although this information might not always be available to the server.

Figure 10 illustrates the Nodes used in the AddressSpace to describe the structure of a DataType. The DataType points to an Object of type DataTypeEncodingType. Each DataType can have several DataTypeEncoding, for example “Default”, “UA Binary” and “XML” encoding. Services in Part 4 allow clients to request an encoding or choosing the “Default” encoding. Each DataTypeEncoding is used by exactly one DataType, that is, it is not permitted for two DataTypes to point to the same DataTypeEncoding. The DataTypeEncoding Object points to exactly one Variable of type DataTypeDescriptionType. The DataTypeDescription Variable belongs to a DataTypeDictionary Variable.

[image: image10.wmf]

Details regarding the

References

used in

this figure

are shown

in the next figure.

Value identifies the description

of the data type in

the

DataTypeDictionary

DataType

Object

of ObjectType

DataTypeEncodingType

Variable

of Va

r

i

a

b

leType

DataTypeDictionary

Type

Object

of ObjectType

DataTypeEncodingType

Object

of ObjectType

DataTypeEncodingType

Several DataTypeEncoding can point

to the same DataTypeDescription,

e.g. “Default” and “UA Binary”

Variable

of Va

r

i

a

b

leType

DataTypeDictionary

Type

Each DataType can have

several DataTypeEncoding,

e.g. “Default”, “UA Binary”,

and “XML”

Variable

of Va

r

i

a

b

leType

DataType

DescriptionType

Object

of Object

Type

DataTyp

e

SystemType

Variable

of

 Va

r

i

a

b

leType

DataType

DescriptionType

Object

of Object

Type

DataType

SystemType

Figure 10 – DataType Model

Since the NodeId of the DataTypeEncoding will be used in some Mappings to identify the DataType and its encoding as defined in Part 6, those NodeIds may also be well-known for well-known DataTypeIds.

The DataTypeDictionary describes a set of DataTypes in sufficient detail to allow clients to parse/interpret Variable Values that they receive and to construct Values that they send. The DataTypeDictionary is represented as a Variable of type DataTypeDictionaryType in the AddressSpace, the description about the DataTypes is contained in its Value Attribute. All containing DataTypes exposed in the AddressSpace are represented as Variables of type DataTypeDescriptionType. The Value of one of these Variables identifies the description of a DataType in the Value Attribute of the DataTypeDictionary.

The DataType of a DataTypeDictionary Variable is always a ByteString. The format and conventions for defining DataTypes in this ByteString are defined by DataTypeSystems. DataTypeSystems are identified by NodeIds. They are represented in the AddressSpace as Objects of the ObjectType DataTypeSystemType. Each Variable representing a DataTypeDictionary references a DataTypeSystem Object to identify their DataTypeSystem.

A client must recognise the DataTypeSystem to parse any of the type description information. OPC UA clients that do not recognise a DataTypeSystem will not be able to interpret its type descriptions, and consequently, the values described by them. In these cases, clients interpret these values as opaque ByteStrings.

OPC Binary and W3C XML Schema are examples of DataTypeSystems. The OPC Binary DataTypeSystem is defined in Annex C. OPC Binary uses XML to describe binary data values. W3C XML Schema is specified in XML Schema Part 1
 and XML Schema Part 2

5.8.2 Encoding Rules for different kinds of DataTypes

Different kinds of DataTypes are distinguished between and are handled differently regarding their encoding and whether this encoding is represented in the AddressSpace.

Built-in DataTypes are a fixed set of DataTypes (see Part 6 for a complete list of Built-in DataTypes). They have no encodings visible in the AddressSpace since the encoding should be known to all OPC UA products. Examples of Built-in DataTypes are Int32 (see 8.26) and Double (see 8.12).

Simple DataTypes are subtypes of the Built-in DataTypes. They are handled on the wire like the Built-in DataType, i.e. they cannot be distinguished on the wire from their Built-in supertypes. Since they are handled like Built-in DataTypes regarding the encoding they cannot have encodings defined in the AddressSpace. Clients can read the DataType Attribute of a Variable or VariableType to identify the Simple DataType of the Value Attribute. An example of a Simple DataType is Duration. It is handled on the wire as a Double but the Client can read the DataType Attribute and thus interpret the value as defined by Duration (see 8.13).

Structured DataTypes are DataTypes that represent structured data and are not defined as Built-in DataTypes. Structured DataTypes inherit directly or indirectly from the DataType Structure defined in 8.32. Structured DataTypes may have several encodings and the encodings are exposed in the AddressSpace. How the encoding of Structured DataTypes is handled on the wire is defined in Part 6. The encoding of the Structured DataType is transmitted with each value, thus Clients are aware of the DataType without reading the DataType Attribute. The encoding has to be transmitted so the Client is able to interpret the data. An example of a Structured DataType is Argument (see 8.6).

Enumeration DataTypes are DataTypes that represent discrete sets of named values. Enumerations are always encoded as Int32 on the wire as defined in Part 6. Enumeration DataTypes inherit directly or indirectly from the DataType Enumeration defined in 8.14. Enumerations have no encodings exposed in the AddressSpace. To expose the human-readable representation of an enumerated value the DataType Node may have a Property EnumStrings containing an array of LocalizedText. The Integer representation of the enumeration value points to a position of that array. An example of an enumeration DataType is NodeClass defined in 8.29.

In addition to the DataTypes described above, abstract DataTypes are also supported, which do not have any encodings and cannot be exchanged on the wire. Variables and VariableTypes use abstract DataTypes to indicate that their Value may be any one of the subtypes of the abstract DataType. An example of an abstract DataType is Integer defined in 8.24.
5.8.3 DataType NodeClass

The DataType NodeClass describes the syntax of a Variable Value. The DataTypes may be simple or complex, depending on the DataTypeSystem. DataTypes are defined using the DataType NodeClass, specified in Table 11.

Table 11 – DataType NodeClass

	Name
	Use
	Data Type
	Description

	Attributes
	
	
	

	
Base NodeClass Attributes
	M
	--
	Inherited from the Base NodeClass. See 5.2

	
IsAbstract
	M
	Boolean
	A boolean Attribute with the following values:

TRUE
it is an abstract DataType.

FALSE
it is not an abstract DataType.

	
	
	
	

	References
	
	
	

	
HasProperty
	0..*
	
	HasProperty References identify the Properties for the DataType.

	
HasSubtype
	0..*
	
	HasSubtype References may be used to span a data type hierarchy.

	
HasEncoding
	0..*
	
	HasEncoding References identify the encodings of the DataType represented as Objects of type DataTypeEncodingType.
Only concrete Structured DataTypes may use HasEncoding References. Abstract, Built-in, Enumeration, and Simple DataTypes are not allowed to be the SourceNode of a HasEncoding Reference.

Each concrete Structured DataType shall point to at least one DataTypeEncoding Object with the BrowseName “Default Binary” or “Default XML” having the NamespaceIndex 0. The BrowseName of the DataTypeEncoding Objects shall be unique in the context of a DataType, i.e. a DataType shall not point to two DataTypeEncodings having the same BrowseName.

	
	
	
	

	Standard Properties
	
	
	

	
NodeVersion
	O
	String
	The NodeVersion Property is used to indicate the version of a Node.

The NodeVersion Property is updated each time a Reference is added or deleted to the Node the Property belongs to. Attribute value changes do not cause the NodeVersion to change. Clients may read the NodeVersion Property or subscribe to it to determine when the structure of a Node has changed.

	
EnumStrings
	O
	LocalizedText[]
	The EnumStrings Property only applies for Enumeration DataTypes. It shall not be applied for other DataTypes.

Each entry of the array of LocalizedText in this Property represents the human-readable representation of an enumerated value The Integer representation of the enumeration value points to a position of the array.

The DataType NodeClass inherits the base Attributes from the Base NodeClass defined in 5.2. The IsAbstract Attribute specifies if the DataType is abstract or not. Abstract DataTypes can be used in the AddressSpace, i.e. Variables and VariableTypes can point with their DataType Attribute to an abstract DataType. However, concrete values can never be of an abstract DataType and shall always be of a concrete subtype of the abstract DataType.
HasProperty References are used to identify the Properties of a DataType. The Property NodeVersion is used to indicate the version of the DataType. This Version is not affect by the DataTypeVersion Property of DataTypeDictionaries and DataTypeDescriptions. The Property EnumStrings contains human-readable representations of enumeration values and is only applied to Enumeration DataTypes. There are no additional Properties defined for DataTypes in this document. Additional parts of this multi-part specification may define additional Properties for DataTypes.

HasSubtype References may be used to expose a data type hierarchy in the AddressSpace. This hierarchy shall reflect the hierarchy specified in the DataTypeDictionary. The semantic of subtyping depends on the DataTypeSystem. Servers need not provide HasSubtype References, even if their DataTypes span a type hierarchy. Clients should not make any assumptions about any other semantic with that information than provided by the DataTypeDictionary. For example, it might not be possible to cast a value of one data type to its base data type.

HasEncoding References point from the DataType to its DataTypeEncodings. Following such a Reference, the client can browse to the DataTypeDictionary describing the structure of the DataType for the used encoding. Each concrete Structured DataType can point to many DataTypeEncodings, but each DataTypeEncoding shall belong to one DataType, that is, it is not permitted for two DataType Nodes to point to the same DataTypeEncoding Object using HasEncoding References.
An abstract DataType is not the SourceNode of a HasEncoding Reference. The DataTypeEncoding of an abstract DataType is provided by its concrete subtypes.
DataType Nodes shall not be the SourceNode of other types of References. However, they may be the TargetNode of other References.

5.8.4 DataTypeDictionary, DataTypeDescription, DataTypeEncoding and DataTypeSystem

A DataTypeDictionary is an entity that contains a set of type descriptions, such as an XML schema. DataTypeDictionaries are defined as Variables of the VariableType DataTypeDictionaryType.

A DataTypeSystem specifies the format and conventions for defining DataTypes in DataTypeDictionaries. DataTypeSystems are defined as Objects of the ObjectType DataTypeSystemType.

The ReferenceType used to relate Objects of the ObjectType DataTypeSystemType to Variables of the VariableType DataTypeDictionaryType is the HasComponent ReferenceType. Thus, the Variable is always the TargetNode of a HasComponent Reference – a requirement for Variables. However, for DataTypeDictionaries the server shall always provide the inverse Reference, since it is necessary to know the DataTypeSystem when processing the DataTypeDictionary.

An example of a DataTypeDictionary is an XML document containing an XML schema. In this case, the DataTypeSystem is the W3C XML Schema and the top level element declarations in the schema document are the data type descriptions. Each of these descriptions is defined in different versions of an XML schema using the same XML target namespace. This target namespace is used as the namespace component of the DataTypeId in the server’s AddressSpace. Since the same target namespace can be used in other XML schemas, clients shall be aware that two DataTypeIds with the same namespace are not necessarily defined in the same DataTypeDictionary.

Changes may be a result of a change to a type description, but it is more likely that dictionary changes are a result of the addition or deletion of type descriptions. This includes changes made while the server is offline so that the new version is available when the server restarts. Clients may subscribe to the DataTypeVersion Property to determine if the DataTypeDictionary has changed since it was last read.

The server may – but is not required to – make the DataTypeDictionary contents available to clients through the Value Attribute. Clients should assume that DataTypeDictionary contents are relatively large and that they will encounter performance problems if they automatically read the DataTypeDictionary contents each time they encounter an instance of a specific DataType. The client should use the DataTypeVersion Property to determine whether the locally cached copy is still valid. If the client detects a change to the DataTypeVersion, then it shall re-read the DataTypeDictionary. This implies that the DataTypeVersion shall be updated by a server even after restart since clients may persistently store the locally cached copy.

The Value Attribute of the DataTypeDictionary containing the type descriptions is a ByteString whose formatting is defined by the DataTypeSystem. For the “XML Schema” DataTypeSystem, the ByteString contains a valid XML Schema document. For the “OPC Binary” DataTypeSystem, the ByteString contains a string that is a valid XML document. The server shall ensure that any change to the contents of the ByteString is matched with a corresponding change to the DataTypeVersion Property. In other words, the client may safely use a cached copy of the DataTypeDictionary, as long as the DataTypeVersion remains the same.

DataTypeDictionaries are complex Variables which expose their DataTypeDescriptions as Variables using HasComponent References. A DataTypeDescription provides the information necessary to find the formal description of a DataType within the DataTypeDictionary. The Value of a DataTypeDescription depends on the DataTypeSystem of the DataTypeDictionary. When using “OPC Binary” dictionaries the Value shall be the name of the TypeDescription. When using “XML Schema” dictionaries the Value shall be an Xpath expression XPATH which points to an XML element in the schema document.

Like DataTypeDictionaries each DataTypeDescription provides the Property DataTypeVersion indicating whether the type description of the DataType has changed. Changes to the DataTypeVersion may impact the operation of Subscriptions. If the DataTypeVersion changes for a Variable that is being monitored for a Subscription and that uses this DataTypeDescription, then the next data change Notification sent for the Variable will contain a status that indicates the change in the DataTypeDescription.

DataTypeEncoding Objects of the DataTypes reference their DataTypeDescriptions of the DataTypeDictionaries using HasDescription References. However, servers are not required to provide the inverse References that relate the DataTypeDescriptions back to the DataTypeEncoding Objects. If a DataType Node is exposed in the AddressSpace, it shall provide its DataTypeEncodings and if a DataTypeDictionary is exposed, it should expose all its DataTypeDescriptions. Both of these References shall be bi-directional.

The VariableTypes DataTypeDictionaryType and DataTypeDescriptionType and the ObjectTypes DataTypeSystemType and DataTypeEncodingType are formally defined in Part 5.

Figure 11 gives an example how DataTypes are modelled in the AddressSpace.

[image: image11.wmf]

Object

UA Binary

of ObjectType

DataTypeEncoding

Type

DataType

Variable

Int32

of Variable

Type

DataTypeDescri

p

tion

Type

Objec

t

Default

 Binary

of ObjectType

DataTypeEncoding

Type

Object

Default XML

of ObjectType

DataTypeEncoding

Type

Object

OPC

 Binary

of ObjectType

DataTypeSystem

Type

Variable

BasicTypes

of Va

r

i

a

b

leType

DataTypeDictionary

Type

Object

XML Schema

of ObjectType

DataTypeSystem

Type

HasEncoding

Object

EDDL XML

of ObjectType

DataTypeEncoding

Type

HasEncoding

HasEncoding

HasEncoding

HasComponent

HasComponent

HasComponent

HasComponent

HasComponent

HasComponent

HasDescription

HasDescription

HasDescription

HasDescription

Variabl

e

Int32

of VariableType

DataTypeDescriptionType

Variable

Basic

XML

Types

of Va

r

i

a

b

leType

DataTypeDictionary

Type

Vari

able

Basic

EDDL

Types

of Va

r

i

a

b

leType

DataTypeDictionary

Type

Variable

Int32

of VariableType

DataTypeDescriptionType

Figure 11 – Example of DataType Modelling

In some scenarios an OPC UA server may have resource limitations which make it impractical to expose large DataTypeDictionaries. In these scenarios the server may be able to provide access to descriptions for individual DataTypes even if the entire dictionary cannot be read. For this reason, this specification defines a Property for the DataTypeDescription called DictionaryFragment (see 5.6.2). This Property is a ByteString that contains a subset of the DataTypeDictionary which describes the format of the DataType associated with the DataTypeDescription. Thus the server splits the large DataTypeDictionary into several small parts clients can access without affecting the overall system performance.

However, servers should provide the whole DataTypeDictionary at once and if this is possible. It is typically more efficient to read the whole DataTypeDictionary at once instead of reading individual parts.
5.9 Summary of Attributes of the NodeClasses

Table 12 summarises all Attributes defined in this document and points out which NodeClasses use them either optional (O) or mandatory (M).

Table 12 – Overview about Attributes

	Attribute
	Variable
	Variable Type
	Object
	Object Type
	Reference Type
	DataType
	Method
	View

	AccessLevel
	M
	
	
	
	
	
	
	

	ArrayDimensions
	O
	O
	
	
	
	
	
	

	BrowseName
	M
	M
	M
	M
	M
	M
	M
	M

	ContainsNoLoops
	
	
	
	
	
	
	
	M

	DataType
	M
	M
	
	
	
	
	
	

	Description
	O
	O
	O
	O
	O
	O
	O
	O

	DisplayName
	M
	M
	M
	M
	M
	M
	M
	M

	EventNotifier
	
	
	M
	
	
	
	
	M

	Executable
	
	
	
	
	
	
	M
	

	Historizing
	M
	
	
	
	
	
	
	

	InverseName
	
	
	
	
	O
	
	
	

	IsAbstract
	
	M
	
	M
	M
	M
	
	

	MinimumSamplingInterval
	O
	
	
	
	
	
	
	

	NodeClass
	M
	M
	M
	M
	M
	M
	M
	M

	NodeId
	M
	M
	M
	M
	M
	M
	M
	M

	Symmetric
	
	
	
	
	M
	
	
	

	UserAccessLevel
	M
	
	
	
	
	
	
	

	UserExecutable
	
	
	
	
	
	
	M
	

	UserWriteMask
	O
	O
	O
	O
	O
	O
	O
	O

	Value
	M
	O
	
	
	
	
	
	

	ValueRank
	M
	M
	
	
	
	
	
	

	WriteMask
	O
	O
	O
	O
	O
	O
	O
	O

6 Type Model for ObjectTypes and VariableTypes

6.1 Overview

In the following clauses the type model of ObjectTypes and VariableTypes is defined regarding subtyping and instantiation.

6.2 Definitions

6.2.1 InstanceDeclaration

An InstanceDeclaration is an Object, Variable or Method that references a ModellingRule with a HasModellingRule Reference and is the TargetNode of a hierarchical Reference from a TypeDefinitionNode or another InstanceDeclaration.

6.2.2 Instances without ModellingRules

If no ModellingRule exists then the Node is neither considered for instantiation of a type nor considered for subtyping.
If a Node referenced by a TypeDefinitionNode does not reference a ModellingRule it indicates that this Node only belongs to the TypeDefinitionNode and not to the instances. For example, an ObjectType Node may contain a Property that describes scenarios where the type could be used. This Property would not be considered when creating instances of the type. This is also true for subtyping, that is, subtypes of the type definition would not inherit the referenced Node.
6.2.3 InstanceDeclarationHierarchy
The InstanceDeclarationHierarchy of a TypeDefinitionNode contains the TypeDefinitionNode and all InstanceDeclarations that are directly or indirectly referenced from the TypeDefinitionNode using hierarchical References in forward direction.

6.2.4 Similar Node of InstanceDeclaration

A similar Node of an InstanceDeclaration is a Node that has the same BrowseName and NodeClass as the InstanceDeclaration and in cases of Variables and Objects the same TypeDefinitionNode or a subtype of it.

6.2.5 BrowsePath

All targets of forward hierarchical References from a TypeDefinitionNode shall have a BrowseName that is unique within the TypeDefinitionNode. The same restriction applies to the targets of hierarchical References in forward direction from any InstanceDeclaration. This means that any InstanceDeclaration within the InstanceDeclarationHierarchy can be uniquely identified by a sequence of BrowseNames. This sequence of BrowseNames is called a BrowsePath.
6.2.6 Attribute Handling of InstanceDeclarations

Some restrictions exist regarding the Attributes of InstanceDeclarations when the InstanceDeclaration is overridden or instantiated. The BrowseName and the NodeClass shall never change and always be the same as the original InstanceDeclaration.

In addition, the rules defined in 6.2.7 apply for InstanceDeclarations of the NodeClass Variable.

6.2.7 Attribute Handling of Variable and VariableTypes

Some restrictions exist regarding the Attributes of a VariableType or a Variable used as an InstanceDeclaration with regard to the data type of the Value Attribute.

When a Variable used as InstanceDeclaration or a VariableType is overridden or instantiated the following rules apply:

1. The DataType Attribute can only be changed to a new DataType if the new DataType is a subtype of the DataType originally used.

2. The ValueRank Attribute may only be further restricted

a. ‘Any’ may be set to any other value;

b. ‘ScalarOrOneDimension’ may be set to ‘Scalar’ or ‘OneDimension’;

c. ‘OneOrMoreDimensions’ may be set to a concrete number of dimensions (value > 0).

d. All other values of this Attribute shall not be changed.

3. The ArrayDimensions Attribute may be added if it was not provided or modify the value of an entry in the array from 0 to a different value. All other values in the array shall remain the same.

6.3 Subtyping of ObjectTypes and VariableTypes
6.3.1 Overview
The HasSubtype ReferenceType defines subtypes of types. Subtyping can only occur between Nodes of the same NodeClass. Rules for subtyping ReferenceTypes are described in 5.3.3.3. There is no common definition for subtyping DataTypes, as described in 5.8.3. The following subclauses specify subtyping rules for single inheritance on ObjectTypes and VariableTypes.

6.3.2 Attributes
Subtypes inherit the parent type’s Attribute values, except for the NodeId. Inherited Attribute values may be overridden by the subtype, the BrowseName and DisplayName values should be overridden. Special rules apply for some Attributes of VariableTypes as defined in 6.2.7. Optional Attributes, not provided by the parent type, may be added to the subtype.

6.3.3 InstanceDeclarations

6.3.3.1 Overview
Subtypes inherit the fully-inherited parent type’s InstanceDeclarations.

As long as those InstanceDeclarations are not overridden they are not referenced by the subtype. InstanceDeclarations can be overridden by adding References, changing References to reference different Nodes, changing References to be sub-types of the original ReferenceType, changing values of the Attributes or adding optional Attributes. In order to get the full information about a subtype, the inherited InstanceDeclarations have to be collected from all types that can be found by following recursively the inverse HasSubtype References from the subtype. This collection of InstanceDeclarations is called the fully-inherited InstanceDeclarationHierarchy of a subtype.

The following sections define how to construct the fully-inherited InstanceDeclarationHierarchy and how InstanceDeclarations can be overridden.
6.3.3.2 Fully-inherited InstanceDeclarationHierarchy
An instance of a TypeDefinitionNode is described by the fully-inherited InstanceDeclaration​Hierarchy of the TypeDefinitionNode. The fully-inherited InstanceDeclarationHierarchy can be created by starting with the InstanceDeclarationHierarchy of the TypeDefinitionNode and merging the fully-inherited InstanceDeclarationHierarchy of its parent type.

The process of merging InstanceDeclarationHierarchies is straight forward and can be illustrated with the example shown in Figure 12 which specifies a TypeDefinitionNode “BetaType” which is a subtype of “AlphaType”. The name in each box is the BrowseName and the number is the NodeId.

[image: image12.emf]AlphaType (1)

B (2)

E (5)

C (3)

D (4)

X

Y

BetaType (6)

F (7)

H (9) J (10)

Z

B (8)

Figure 12 – Subtyping TypeDefinitionNodes
An InstanceDeclarationHierarchy can be fully described as a table of Nodes identified by their BrowsePaths with a corresponding table of References. The InstanceDeclarationHierarchy for “BetaType” is described in Table 13 where the top half of the table is the table of Nodes and the bottom half is the table of References (the HasModellingRule references have been omitted from the table for the sake of clarity, all Nodes except for 1, 6, and 5 have ModellingRules). All InstanceDeclarations of the InstanceDeclarationHierarchy and all Nodes referenced with a non-hierarchical Reference from such an InstanceDeclaration are added to the table. Hierarchical References to Nodes without a ModellingRule are not considered.

 Table 13 – The InstanceDeclarationHierarchy for BetaType

	BrowsePath
	NodeId
	
	

	/
	6
	
	

	/F
	7
	
	

	/B
	8
	
	

	/F/H
	9
	
	

	/B/J
	10
	
	

	/B/H
	9
	
	

	

	Source Path
	ReferenceType
	Target Path
	TargetNodeId

	/
	HasComponent
	/F
	-

	/
	HasComponent
	/B
	-

	/
	Z
	/B
	-

	/
	HasTypeDefinition
	-
	BetaType

	/F
	HasComponent
	/F/H
	-

	/F
	HasTypeDefinition
	-
	BaseObjectType

	/B
	HasProperty
	/B/J
	-

	/B
	HasTypeDefinition
	-
	BaseObjectType

	/F/H
	HasTypeDefinition
	-
	PropertyType

	/B/J
	HasTypeDefinition
	-
	PropertyType

	/B
	HasComponent
	/B/H
	-

	/B/H
	HasTypeDefinition
	-
	BaseDataVariableType

Multiple BrowsePaths to the same Node shall be treated as separate Nodes. An Instance may provide different Nodes for each BrowsePath.
The fully-inherited InstanceDeclarationHierarchy for “BetaType” can now be constructed by merging the InstanceDeclarationHierarchy for “AlphaType”. The result is shown in Table 14 where the entries added from “AlphaType” are shaded with grey.

Table 14 – The Fully-Inherited InstanceDeclarationHierarchy for BetaType

	BrowsePath
	NodeId
	
	

	/
	6
	
	

	/F
	7
	
	

	/B
	8
	
	

	/F/H
	9
	
	

	/B/J
	10
	
	

	/B/H
	9
	
	

	/B/D
	4
	
	

	/C
	3
	
	

	

	Source Path
	ReferenceType
	Target Path
	TargetNodeId

	/
	HasComponent
	/F
	-

	/
	HasComponent
	/B
	-

	/
	Z
	/B
	-

	/
	HasTypeDefinition
	-
	BetaType

	/F
	HasComponent
	/F/H
	-

	/F
	HasTypeDefinition
	-
	BaseObjectType

	/B
	HasProperty
	/B/J
	-

	/B
	HasTypeDefinition
	-
	BaseObjectType

	/F/H
	HasTypeDefinition
	-
	PropertyType

	/B/J
	HasTypeDefinition
	-
	PropertyType

	/B
	HasComponent
	/B/H
	-

	/B/H
	HasTypeDefinition
	-
	BaseDataVariableType

	/
	HasNotifier
	/B
	-

	/B
	HasProperty
	/B/D
	-

	/
	HasComponent
	/C
	-

	/
	Y
	/C
	-

	/C
	HasTypeDefinition
	-
	BaseDataVariableType

	/B/D
	HasTypeDefinition
	-
	PropertyType

	/B/D
	X
	/C
	-

The BrowsePath “/B” already exists in the table so it does not need to be added. However, the HasNotifier reference from “/” to “/B” is not and was added.

The Nodes and References defined in Table 14 can be used to create the fully-inherited InstanceDeclarationHierarchy shown in Figure 13. The fully-inherited InstanceDeclarationHierarchy contains all necessary information about a TypeDefinitionNode regarding its complex structure without needing any additional information from its supertypes.

[image: image13.emf]B (8)

D (4)

X

F (7)

C (3)

H (9)

BetaType

(Fully Inherited)

Y

Z

J (10)

Figure 13 – The Fully-Inherited InstanceDeclarationHierarchy for BetaType

6.3.3.3 Overriding InstanceDeclarations

A subtype overrides an InstanceDeclaration by specifying an InstanceDeclaration with the same BrowsePath. An overridden InstanceDeclaration shall have the same NodeClass and BrowseName. The TypeDefinitionNode of the overridden InstanceDeclaration shall be the same or a subtype of the TypeDefinitionNode specified in the supertype.

When overriding an InstanceDeclaration it is necessary to provide hierarchical References that link the new Node back to the subtype (the References are used to determine the BrowsePath of the Node).

It is only possible to override InstanceDeclarations that are directly referenced from the TypeDefinitionNode. If an indirect referenced InstanceDeclaration, such as “J” in Figure 13, has to be overridden, then the directly referenced InstanceDeclarations that includes “J”, in that case “B”, has to be overridden first and “J” can then be overridden in a second step.

A Reference is replaced if it goes between two overridden Nodes and has the same ReferenceType as a Reference defined in the supertype. The Reference specified in the subtype may be a subtype of the ReferenceType used in the parent type.

Any non-hierarchical References specified for the overridden InstanceDeclaration are treated as new References unless the ReferenceType only allows a single Reference per SourceNode. If this situation exists the subtype can change the target of the Reference but the new target shall have the same NodeClass and for Objects and Variables also the same type or a subtype of the type specified in the parent.

The overriding Node may specify new values for the Node Attributes other than the NodeClass or BrowseName, however, the restrictions on Attributes specified in 6.2.6 apply. Any Attribute provided by the overridden InstanceDeclaration has to be provided by the overriding InstanceDeclaration, additional optional Attributes may be added.

The ModellingRule of the overriding InstanceDeclaration may be changed as defined in 6.4.4.3.

Each overriding InstanceDeclaration needs its own HasModellingRule and HasTypeDefinition References, even if they have not been changed.
A subtype should not override a Node unless it needs to change it.
The semantics of certain TypeDefinitionNodes and ReferenceTypes may impose additional restrictions with regards to overriding Nodes.

6.4 Instances of ObjectTypes and VariableTypes
6.4.1 Overview

Any Instance of a TypeDefinitionNode will be the root of a hierarchy which mirrors the InstanceDeclarationHierarchy for the TypeDefinitionNode. Each Node in the hierarchy of the Instance will have a BrowsePath which may be the same as the BrowsePath for one of InstanceDeclarations in the hierarchy of the TypeDefinitionNode. The InstanceDeclaration with the same BrowsePath is the called InstanceDeclaration for the Node. If a Node has an InstanceDeclaration then it shall have the same BrowseName and NodeClass as the InstanceDeclaration and, in cases of Variables and Objects, the same TypeDefinitionNode or a subtype of it.

Instances may reference several Nodes with the same BrowsePath. Clients that need to distinguish between the Nodes based on the InstanceDeclarationHierarchy and the Nodes that are not based on the InstanceDeclarationHierarchy can accomplish this using the TranslateBrowsePathsToNodeIds service defined in Part 4.
6.4.2 Creating an Instance
Instances inherit the initial values for the Attributes that they have in common with the TypeDefinitionNode from which they are instantiated, with the exceptions of the NodeClass and NodeId.
When a Server creates an instance of a TypeDefinitionNode it shall create the same hierarchy of Nodes beneath the new Object or Variable depending on the ModellingRule of each InstanceDeclaration. Standard ModellingRules are defined in 6.4.4.5. The Nodes within the new created hierarchy may be copies of the InstanceDeclarations, the InstanceDeclaration itself or another Node in the AddressSpace that has the same TypeDefinitionNode and BrowseName. If new copies are created, the Attribute values of the InstanceDeclarations are used as initial values.

Figure 14 provides a simple example of a TypeDefinitionNode and an Instance. Nodes referenced by the TypeDefinitionNode without a ModellingRule do not appear in the instance. Instances may have children with duplicate BrowseNames; however, only one of those children will correspond to the InstanceDeclaration.

[image: image14.emf]AlphaType

B

[Mandatory]

E

C

[Mandatory]

Alpha1

D

[Mandatory]

B C

D

F

Figure 14 – An Instance and its TypeDefinitionNode

It is up to the Server to decide which InstanceDeclarations appear in any single instance. In some cases, the Server will not define the entire instance and will provide remote references to Nodes in another Server. The ModellingRules described in 6.4.4.5 allow Servers to indicate that some Nodes are always present; however, the Client shall be prepared for the case where the Node exists in a different Server.

A Client can use the information of TypeDefinitionNodes to access Nodes which are in the hierarchy of the instance. It shall pass the NodeId of the instance and the BrowsePath of the child Nodes based on the TypeDefinitionNode to the TranslateBrowsePathsToNodeIds service (see Part 4). This Service returns the NodeId for each of the child Nodes. If a child Node exists then the BrowseName and NodeClass shall match the InstanceDeclaration. In the case of Objects or Variables, also the TypeDefinitionNode shall either match or be a subtype of the original TypeDefinitionNode.
6.4.3 Constraints on an Instance

Objects and Variables may change their Attribute values after being created. Special rules apply for some Attributes as defined in 6.2.6.

Additional References may be added to the Nodes and References may be deleted as long as the ModellingRules defined on the InstanceDeclarations of the TypeDefinitionNode are still fulfilled.

For Variables and Objects the HasTypeDefinition Reference shall always point to the same TypeDefinitionNode as the InstanceDeclaration or a subtype of it.

If two InstanceDeclarations of the fully-inherited InstanceDeclarationHierarchy have been connected directly with several References, all those References shall connect the same Nodes. An example is given in Figure 15. The instances A1 and A2 are allowed since B1 references the same Node with both References, whereas A3 is not allowed since two different Nodes are referenced. Note that this restriction only applies for directly connected Nodes. For example, A2 references a C1 directly and a different C1 via B1.

[image: image15.emf]B1::Type_B

[Mandatory]

Type_A

A1::Type_A

C1:Type_C

[Mandatory]

B1::Type_B

C1:Type_C

A2::Type_A

B1::Type_B

C1:Type_C

C1:Type_C

A3::Type_A

B1::Type_B

C1:Type_C

C1:Type_C

Not directly

referenced from A2

Figure 15 – Example for several References between InstanceDeclarations

6.4.4 ModellingRules

6.4.4.1 General

This specification defines ModellingRules. 6.4.4.5 defines ModellingRules in this document. Other parts of this multi-part specification may define additional ModellingRules. ModellingRules are an extendable concept in OPC UA; therefore vendors may define their own ModellingRules.
Note that the ModellingRules defined in this specification do not define how to deal with non-hierarchical References between InstanceDeclarations, i.e. it is server-specific if those References exist in an instance hierarchy or not. Other ModellingRules may define behaviour for non-hierarchical References between InstanceDeclaration as well.

ModellingRules are represented in the AddressSpace as Objects of the ObjectType ModellingRuleType. There are some Properties defining common semantic of ModellingRules. This version of the specification only specifies one Property for ModellingRules. Future versions of the specification may define additional Properties for ModellingRules. Part 5 specifies the representation of the ModellingRule Objects, their Properties and their type in the AddressSpace. The semantic of the Properties for ModellingRules is defined in 6.4.4.2.

6.4.4.4 defines how the ModellingRule may be changed when instantiating InstanceDeclarations with respect to the Properties. 6.4.4.3 defines how the ModellingRule may be changed when overriding InstanceDeclarations in subtypes with respect to the Properties.

6.4.4.2 Properties describing ModellingRules

6.4.4.2.1 NamingRule

NamingRule is a mandatory Property of a ModellingRule. It specifies the purpose of an InstanceDeclaration. Each InstanceDeclaration references to a ModellingRule and thus the NamingRule is defined per InstanceDeclaration.

Three values are allowed for the NamingRule of a ModellingRule: Optional, Mandatory, and Constraint.

The following semantic is valid for the entire life-time of an instance that is based on a TypeDefinitionNode having an InstanceDeclaration.

For an instance A1 of a TypeDefinitionNode AlphaType with an InstanceDeclaration B1 having a ModellingRule using the NamingRule Optional the following rule applies: For each BrowsePath from AlphaType to B1 the instance A1 may or may not have a similar Node (see 6.2.4) for B1 with the same BrowsePath. If such a Node exists the TranslateBrowsePathsToNodeIds service (see Part 4) returns this Node as first entry in the list.

For an instance A1 of a TypeDefinitionNode AlphaType with an InstanceDeclaration B1 having a ModellingRule using the NamingRule Mandatory the following rule applies: For each BrowsePath from AlphaType to B1 the instance A1 shall have a similar Node (see 6.2.4) for B1 using the same BrowsePath if all Nodes of the BrowsePath exist. For example, if a Node in the BrowsePath has a NamingRule Optional and is omitted in the instance, then all children of this Node it would also be omitted, independent of their ModellingRules.

If an InstanceDeclaration has a ModellingRule using the NamingRule Constraint it identifies that the BrowseName of the InstanceDeclaration is of no significance but other semantic is defined with the ModellingRule. The TranslateBrowsePathsToNodeIds service (see Part 4) can typically not be used to access instances based on those InstanceDeclarations.

6.4.4.3 Subtyping Rules for Properties of ModellingRules

It is allowed that subtypes override ModellingRules on their InstanceDeclarations. As a general rule for subtyping, constraints shall only be tightened, not loosened. Therefore, it is not allowed to specify on the supertype that an instance shall exist with the name (NamingRule Mandatory) and on the subtype make this optional (NamingRule Optional). Table 15 specifies the allowed changes on the Properties when exchanging the ModellingRules in the subtype.

Table 15 – Rule for ModellingRules Properties when Subtyping

	
	Value on supertype
	Value on subtype

	NamingRule
	Mandatory
	Mandatory

	NamingRule
	Optional
	Mandatory or Optional

	NamingRule
	Constraint
	Constraint

6.4.4.4 Instantiation Rules for Properties of ModellingRules

There are two different use cases when creating an instance ‘A’ based on a TypeDefinitionNode ‘A_Type’. Either ‘A’ is used as normal instance or it is used as InstanceDeclaration of another TypeDefinitionNode.

In the first case, it is not required that newly created or referenced instances based on InstanceDeclarations have a ModellingRule, however it is allowed that they have any ModellingRule independent of the ModellingRule of their InstanceDeclaration.

In Figure 16 an example is given. The instances A1, A2, and A3 are all valid instances of Type_A, although B of A1 has no ModellingRule and B of A3 a different ModellingRule then B of Type_A.

[image: image16.emf]Type_A

B::Type_B

[Mandatory]

A1

B::Type_B

A2

B::Type_B

[Mandatory]

A3

B::Type_B

[Optional]

Figure 16 – Example on changing instances based on InstanceDeclarations

In the second case, all instances that are referenced directly or indirectly from ‘A’ based on InstanceDeclarations of ‘A_Type’ initially maintain the same ModellingRule as their InstanceDeclarations. The ModellingRules may be updated; the allowed changes to the ModellingRules of these Nodes are the same as those defined for subtyping in 6.4.4.3.

In Figure 17 an example of such a scenario is given. Type_B uses an InstanceDeclaration based on Type_A (upper part of the Figure). Later on the ModellingRules of the InstanceDeclaration A1 is changed (lower part of the Figure). A1 has become the NamingRule of Mandatory (changed from Optional).

[image: image17.emf]Modified Type

Type_A

A1 [Optional]

A2 [Mandatory]

Type_B

A [Mandatory]

A2 [Mandatory]

Type_B

A [Mandatory]

A2 [Mandatory]

A1 [Mandatory]

A1 [Optional]

Figure 17 – Example on changing InstanceDeclarations based on an InstanceDeclaration

6.4.4.5 Standard ModellingRules

6.4.4.5.1 Titles of Standard ModellingRules

The following subclauses define ModellingRules. In Table 16 the Properties of those ModellingRules are summarized.

Table 16 – Properties of ModellingRules

	Title
	NamingRule

	Mandatory
	Mandatory

	Optional
	Optional

	ExposesItsArray
	Constraint

6.4.4.5.2 Mandatory
An InstanceDeclaration marked with the ModellingRule Mandatory fulfils exactly the semantic defined for the NamingRule Mandatory. That means that for each existing BrowsePath on the instance a similar Node shall exist, but it is not defined whether a new Node is created or an existing Node is referenced.

For example, the TypeDefinitionNode of a functional block “AI_BLK_TYPE” will have a setpoint “SP1”. An instance of this type “AI_BLK_1” will have a newly-created setpoint “SP1 as a similar Node to the InstanceDeclaration SP1. Figure 18 illustrates the example.

[image: image18.emf]AI_BLK_1

AI_BLK_TYPE

SP1:SetPoint

SP1:SetPoint

Mandatory::ModellingRuleType

HasModellingRule

Figure 18 – Use of the Standard ModellingRule New
In 6.4.4.5.3 a complex example combining the Mandatory and Optional ModellingRules is given.
6.4.4.5.3 Optional
An InstanceDeclaration marked with the ModellingRule Optional fulfils exactly the semantic defined for the NamingRule Optional. That means that for each existing BrowsePath on the instance a similar Node may exist, but it is not defined whether a new Node is created or an existing Node is referenced.

In Figure 19 an example using the ModellingRules Optional and Mandatory is shown. The example contains an ObjectType A_Type and all valid combinations of instances named A1 to A13. Note that if the optional B is provided, the mandatory E has to be provided as well, otherwise not. F is referenced by C and D. On the instance, this can be the same Node or two different Nodes with the same BrowseName (similar Node to InstanceDeclaration F). Not considered in the example is if the instances have ModellingRules or not. It is assumed that each F is similar to the InstanceDeclaration F, etc.

If there would be a non-hierarchical Reference between E and F in the InstanceDeclaration​Hierarchy, it is not specified if it occurs in the instance hierarchy or not. In the case of A13, there could be a reference from on F but not from the other, or from both or none of them.

[image: image19.emf]Type_A

D [Optional]

C [Mandatory]

B [Optional] E [Mandatory]

F [Optional]

A1

C

B

A2

C

E

B

A9

C

D

E

A4

C

D

A5

C

D

F

F

A6

C

D

F

A7

C

D

F

A8

C

D

F

B

A3

C

E

F

B

A11

C

D

E

F

B

A10

C

D

E

F

F

B

A12

C

D

E

F

B

A13

C

D

E

F

Figure 19 – Example using the Standard ModellingRules Optional and Mandatory

6.4.4.5.4 ExposesItsArray

The ExposesItsArray ModellingRule exposes a special semantic on VariableTypes having a single- or multidimensional array as data type. It indicates that each value of the array will also be exposed as a Variable in the AddressSpace.

The ExposesItsArray ModellingRule can only be applied on InstanceDeclarations of NodeClass Variable that are part of a VariableType having a single- or multidimensional array as data type.

The Variable A having this ModellingRule shall be referenced by a hierarchical Reference in forward direction from a VariableType B. B shall have a ValueRank value equal or larger then zero. A should have a data type that reflects at least parts of the data that is managed in the array of B. Each instance of B shall reference one instance of A for each of its array elements. The used Reference shall be of the same type as the hierarchical Reference that connects B with A or a subtype of it. If there are more then one hierarchical References in forward direction between A and B, then all instances based on B shall be referenced with all those References.

Figure 20 gives an example. A is an instance of Type_A having two entries in its value array. Therefore it references two instances of the same type as the InstanceDeclaration ArrayExpose. The BrowseNames of those instances is not defined by the ModellingRule. In general, it is not possible to get a Variable representing a specific entry in the array (e.g. the second). Clients will typically either get the array or access the Variables directly, so there is no need providing that information.

[image: image20.emf]Type_A

ArrayExpose::Type_X

ExposesItsArray

::ModellingRuleType

HasModellingRule

A

A1::Type_X

A2::Type_X

Figure 20 – Example on using ExposesItsArray

It is allowed to reference A by other InstanceDeclarations as well. Those References have to be reflected on each instance based on A.

Figure 21 gives an example. The Property EUUnit is referenced by ArrayExpose and therefore each instance based on ArrayExpose references the instance based on the InstanceDeclaration EUUnit.

[image: image21.emf]Type_A

ArrayExpose::Type_X

ExposesItsArray

::ModellingRuleType

HasModellingRule

A

A1::Type_X

A2::Type_X

EUUnit [Mandatory] EUUnit

Figure 21 – Complex example on using ExposesItsArray

6.5 Changing Type Definitions that are already used

There is no behaviour specified regarding subtypes and instances when changing ObjectTypes and VariableTypes. It is server-dependent, if those changes are reflected on the subtypes and instances of the types. However, all constraints defined for subtypes and instances have to be fulfilled. For example, it is not allowed to add a Property using the ModellingRule Mandatory on a type if instances of this type exist without the Property. In that case, the server either has to add the Property to all instances of the type or adding the Property on the type has to be rejected.

6.6 ModelParent

Each Object, Variable and Method may be referenced by several hierarchical References. To indicate the scope of such a Node ‘A’ it can expose its ModelParent. The ModelParent of ‘A’ is the scope where ‘A’ is defined. When a client intends to change ‘A’ it can use the ModelParent to determine whether it has the correct scope.

For example, a TypeDefinitionNode ‘Type_A’ may have an InstanceDeclaration called ‘Icon’ which is shared by all instances. Thus the ModelParent of ‘Icon’ is ‘Type_A’. A client may browse to an instance ‘A’ that is of ‘Type_A’ to change the value of ‘Icon’ for ‘A’. ‘A’ is referencing the shared InstanceDeclaration ‘Icon’ and by identifying its ModelParent a client can figure out that the scope of the Node was not ‘A’ but ‘Type_A’. Thus the client may not change the value of the Node but rather create a copy, reference the copy instead of the InstanceDeclaration and change the value of the copy.

To identify a ModelParent the ReferenceType HasModelParent is used referencing from the Object, Variable or Method to the Node representing the ModelParent. The ModelParent shall reference the Object, Variable or Method with a hierarchical Reference in forward direction.

HasModelParent References shall be provided for all ModellingRules defined in this document. It is not required to expose the HasModelParent References for other ModellingRules, but it is recommended. It is allowed to provide a HasModelParent Reference on Objects, Variables, and Methods having no HasModellingRule reference. However, this is not required and may not always be possible since there may be no clear defined ModelParent.

Figure 22 illustrates the HasModelParent relationships for a TypeDefinitionNode and two instances. In this example, the model parent of Node “C” is the TypeDefinitionNode and all instances reference it with hierarchical references.

[image: image22.emf]AlphaType

B C

Alpha1

B

Alpha2

B

HasModelParent

HasModelParent

HasModelParent

HasModelParent

Figure 22 – Example on ModelParents
7 Standard ReferenceTypes

7.1 General

This specification defines ReferenceTypes as an inherent part of the OPC UA Address Space Model. Figure 23 informally describes the hierarchy of these ReferenceTypes. Other parts of this multi-part specification may specify additional ReferenceTypes. The following subclauses define the ReferenceTypes. Part 5 defines their representation in the AddressSpace.

[image: image23.emf]References

HierarchicalReferences NonHierarchicalReferences

HasEventSource

HasNotifier

HasChild Organizes

Aggregates HasSubtype

HasProperty HasComponent

HasOrderedComponent

HasModellingRule

HasTypeDefinition

HasEncoding

HasModelParent

GeneratesEvent

HasDescription

AlwaysGeneratesEvent

Figure 23 – Standard ReferenceType Hierarchy

7.2 References ReferenceType

The References ReferenceType is an abstract ReferenceType; only subtypes of it can be used.

There is no semantic associated with this ReferenceType. This is the base type of all ReferenceTypes. All ReferenceTypes shall be a subtype of this base ReferenceType – either direct or indirect. The main purpose of this ReferenceType is allowing simple filter and queries in the corresponding Services of Part 5.

There are no constraints defined for this abstract ReferenceType.

7.3 HierarchicalReferences ReferenceType

The HierarchicalReferences ReferenceType is an abstract ReferenceType; only subtypes of it can be used.

The semantic of HierarchicalReferences is to denote that References of HierarchicalReferences span a hierarchy. It means that it may be useful to present Nodes related with References of this type in a hierarchy-like way. HierarchicalReferences does not forbid loops. For example, starting from Node “A” and following HierarchicalReferences may lead to browse to Node “A”, again.

It is not permitted to have a Property as SourceNode of a Reference of any subtype of this abstract ReferenceType.
It is not allowed that the SourceNode and the TargetNode of a Reference of the ReferenceType HierarchicalReferences are the same, i.e. it is not allowed to have self references using HierarchicalReferences.
7.4 NonHierarchicalReferences ReferenceType

The NonHierarchicalReferences ReferenceType is an abstract ReferenceType; only subtypes of it can be used.

The semantic of NonHierarchicalReferences is to denote that its subtypes do not span a hierarchy and should not be followed when trying to present a hierarchy. To distinguish hierarchical and non-hierarchical References, all concrete ReferenceTypes shall inherit from either hierarchical References or non-hierarchical References, either direct or indirect.

There are no constraints defined for this abstract ReferenceType.

7.5 HasChild ReferenceType

The HasChild ReferenceType is an abstract ReferenceType; only subtypes of it can be used. It is a subtype of HierarchicalReferences.

The semantic is to indicate that References of this type span a non-looping hierarchy.

Starting from Node “A” and only following References of the subtypes of the HasChild ReferenceType shall never be able to return to “A”. But it is allowed that following the References there may be more than one path leading to another Node “B”.
7.6 Aggregates ReferenceType

The Aggregates ReferenceType is an abstract ReferenceType; only subtypes of it can be used. It is a subtype of HasChild.

The semantic is to indicate a part (the TargetNode) belongs to the SourceNode. It does not specify the ownership of the TargetNode.

There are no constraints defined for this abstract ReferenceType.

7.7 HasComponent ReferenceType

The HasComponent ReferenceType is a concrete ReferenceType that can be used directly. It is a subtype of the Aggregates ReferenceType.

The semantic is a part-of relationship. The TargetNode of a Reference of the HasComponent ReferenceType is a part of the SourceNode. This ReferenceType is used to relate Objects or ObjectTypes with their containing Objects, DataVariables, and Methods as well as complex Variables or VariableTypes with their DataVariables.

Like all other ReferenceTypes, this ReferenceType does not specify anything about the ownership of the parts, although it represents a part-of relationship semantic. That is, it is not specified if the TargetNode of a Reference of the HasComponent ReferenceType is deleted when the SourceNode is deleted.

The TargetNode of this ReferenceType shall be a Variable, an Object or a Method.

If the TargetNode is a Variable, the SourceNode shall be an Object, an ObjectType, a DataVariable or a VariableType. By using the HasComponent Reference, the Variable is defined as DataVariable.

If the TargetNode is an Object or a Method, the SourceNode shall be an Object or ObjectType.

7.8 HasProperty ReferenceType

The HasProperty ReferenceType is a concrete ReferenceType that can be used directly. It is a subtype of the Aggregates ReferenceType.

The semantic is to identify the Properties of a Node. Properties are described in 4.4.2.

The SourceNode of this ReferenceType can be of any NodeClass. The TargetNode shall be a Variable. By using the HasProperty Reference, the Variable is defined as Property. Since Properties shall not have Properties, a Property shall never be the SourceNode of a HasProperty Reference.

7.9 HasOrderedComponent ReferenceType

The HasOrderedComponent ReferenceType is a concrete ReferenceType that can be used directly. It is a subtype of the HasComponent ReferenceType.

The semantic of the HasOrderedComponent ReferenceType – besides the semantic of the HasComponent ReferenceType – is that when browsing from a Node and following References of this type or its subtype all References are returned in the Browse Service defined in Part 5 in a well-defined order. The order is server-specific, but the client can assume that the server always returns them in the same order.

There are no additional constraints defined for this ReferenceType.

7.10 HasSubtype ReferenceType

The HasSubtype ReferenceType is a concrete ReferenceType that can be used directly. It is a subtype of the HasChild ReferenceType.

The semantic of this ReferenceType is to express a subtype relationship of types. It is used to span the ReferenceType hierarchy, which semantic is specified in 5.3.3.3; a DataType hierarchy as specified in 5.8.3, as well as other subtype hierarchies as specified in Clause 6.

The SourceNode of References of this type shall be an ObjectType, a VariableType, a DataType or a ReferenceType and the TargetNode shall be of the same NodeClass as the SourceNode. Each ReferenceType shall be the TargetNode of at most one Reference of type HasSubtype.

7.11 Organizes ReferenceType

The Organizes ReferenceType is a concrete ReferenceType and can be used directly. It is a subtype of HierarchicalReferences.

The semantic of this ReferenceType is to organise Nodes in the AddressSpace. It can be used to span multiple hierarchies independent of any hierarchy created with the non-looping Aggregates References.

The SourceNode of References of this type shall be an Object or a View. If it is an Object it should be an Object of the ObjectType FolderType or one of its subtypes (see 5.5.3).

The TargetNode of this ReferenceType can be of any NodeClass.

7.12 HasModellingRule ReferenceType

The HasModellingRule ReferenceType is a concrete ReferenceType and can be used directly. It is a subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to bind the ModellingRule to an Object, Variable or Method. The ModellingRule mechanisms are described in 6.4.4.

The SourceNode of this ReferenceType shall be an Object, Variable or Method. The TargetNode shall be an Object of the ObjectType “ModellingRule” or one of its subtypes.

Each Node shall be the SourceNode of at most one HasModellingRule Reference.
7.13 HasModelParent ReferenceType

The HasModelParent ReferenceType is a concrete ReferenceType and can be used directly. It is a subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to expose the ModelParent of in Object, Variable or Method. The ModelParent mechanisms are described in 6.6.

The SourceNode of this ReferenceType shall be an Object, Variable or Method.
Each Node shall be the SourceNode of at most one HasModelParent Reference.
7.14 HasTypeDefinition ReferenceType

The HasTypeDefinition ReferenceType is a concrete ReferenceType and can be used directly. It is a subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to bind an Object or Variable to its ObjectType or VariableType, respectively. The relationships between types and instances are described in 4.5.

The SourceNode of this ReferenceType shall be an Object or Variable. If the SourceNode is an Object, the TargetNode shall be an ObjectType; if the SourceNode is a Variable, the TargetNode shall be a VariableType.

Each Variable and each Object shall be the SourceNode of exactly one HasTypeDefinition Reference.

7.15 HasEncoding ReferenceType

The HasEncoding ReferenceType is a concrete ReferenceType and can be used directly. It is a subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to reference DataTypeEncodings of a DataType.

The SourceNode of References of this type shall be a DataType.

The TargetNode of this ReferenceType shall be an Object of the ObjectType DataTypeEncodingType or one of its subtypes (see 5.8.4).

7.16 HasDescription ReferenceType

The HasDescription ReferenceType is a concrete ReferenceType and can be used directly. It is a subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to reference the DataTypeDescription of a DataTypeEncoding.

The SourceNode of References of this type shall be an Object of the ObjectType DataTypeEncodingType or one of its subtypes.

The TargetNode of this ReferenceType shall be a Variable of the VariableType DataTypeDescriptionType or one of its subtypes (see 5.8.4).

7.17 GeneratesEvent

The GeneratesEvent ReferenceType is a concrete ReferenceType and can be used directly. It is a subtype of NonHierarchicalReferences.

The semantic of this ReferenceType is to identify the types of Events instances of ObjectTypes or VariableTypes may generate and Methods may generate on each Method call.

The SourceNode of References of this type shall be an ObjectType, a VariableType or a Method.

The TargetNode of this ReferenceType shall be an ObjectType representing EventTypes, i.e. the BaseEventType or one of its subtypes.
7.18 AlwaysGeneratesEvent
The AlwaysGeneratesEvent ReferenceType is a concrete ReferenceType and can be used directly. It is a subtype of GeneratesEvent.

The semantic of this ReferenceType is to identify the types of Events Methods have to generate on each Method call.

The SourceNode of References of this type shall be a Method.

The TargetNode of this ReferenceType shall be an ObjectType representing EventTypes, i.e. the BaseEventType or one of its subtypes.

7.19 HasEventSource

The HasEventSource ReferenceType is a concrete ReferenceType and can be used directly. It is a subtype of HierarchicalReferences.

The semantic of this ReferenceType is to relate event sources in a hierarchical, non-looping organization. This ReferenceType and any subtypes are intended to be used for discovery of Event generation in a server. They are not required to be present for a server to generate Event from its source to its notifying Nodes. In particular, the root notifier of a server – the Server Object defined in Part 5 – is always capable of supplying all Events from a server and as such has implied HasEventSource References to every event source in a server.

The SourceNode of this ReferenceType shall be an Object that is a source of event subscriptions. A source of event subscriptions is an Object that has its “SubscribeToEvents” bit set within the EventNotifier Attribute.

The TargetNode of this ReferenceType can be a Node of any NodeClass that can generate event notifications via a subscription to the reference source.

Starting from Node “A” and only following References of the HasEventSource ReferenceType or its subtypes shall never be able to return to “A”. But it is permitted that, following the References, there may be more than one path leading to another Node “B”.

7.20 HasNotifier

The HasNotifier ReferenceType is a concrete ReferenceType and can be used directly. It is a subtype of HasEventSource.

The semantic of this ReferenceType is to relate Object Nodes that are notifiers with other notifier Object Nodes. The ReferenceType is used to establish a hierarchical organization of event notifying Objects. It is a subtype of the HasEventSource ReferenceType defined in 7.18.

The SourceNode of this ReferenceType shall be Objects or Views that are a source of event subscriptions The TargetNode of this ReferenceType shall be Objects that are a source of event subscriptions. A source of event subscriptions is an Object that has its “SubscribeToEvents” bit set within the EventNotifier Attribute.

If the TargetNode of a Reference of this type generates an Event, this Event shall also be provided in the SourceNode of the Reference.

An example of a possible organization of Event References is represented in Figure 24. In this example an unfiltered Event subscription directed to the “Level Sensor” Object will provide the Event sources “Low Level” and “High Level” to the subscriber. An unfiltered Event subscription directed to the “Area 1” Object will provide Event sources from “Machine B”, “Tank A” and all notifier sources below “Tank A”.

[image: image24.emf]Area 1

Level

Sensor

Machine

B

Tank A

Temp

Sensor

High

Temp

High

Level

Low

Level

HasNotifier

ReferenceType

Legend

Event Sourcing Node

Event Notifier Object

HasEventSource

ReferenceType

Phase

Start

Figure 24 – Event Reference Example

A second example of a more complex organization of Event References is represented in Figure 25. In this example, explicit References are included from the server’s Server Object, which is a source of all server Events. A second Event organization has been introduced to collect the Events related to “Tank Farm 1”. An unfiltered Event subscription directed to the “Tank Farm 1” Object will provide Event sources from “Tank B”, “Tank A” and all notifier sources below “Tank B” and “Tank A”.

[image: image25.emf]Area 1

Level

Sensor

Machine

B

Tank A

Temp

Sensor

High

Temp

High

Level

Low

Level

HasNotifier

ReferenceType

Legend

Event Sourcing Node

Event Notifier Object

HasEventSource

ReferenceType

Phase

Start

Server

Object

Tank

Farm 1

Tank B

Phase

Start

Level

Sensor

Temp

Sensor

High

Temp

High

Level

Figure 25 – Complex Event Reference Example

8 Standard DataTypes

8.1 General

The following subclauses define DataTypes. Their representation in the AddressSpace and the DataType hierarchy is specified in Part 5. Other parts of this multi-part specification may specify additional DataTypes.

8.2 NodeId

8.2.1 General

This Built-in DataType is composed of three elements that identify a Node within a server. They are defined in Table 17.

Table 17 – NodeId Definition

	Name
	Type
	Description

	NodeId
	structure
	

	
namespaceIndex
	UInt16
	The index for a namespace URI (see 8.2.2).

	
identifierType
	Enum IdType

	The format and data type of the identifier (see 8.2.3).

	
identifier
	*
	The identifier for a Node in the AddressSpace of an OPC UA server (see 8.2.4).

See Part 6 for a description of the encoding of the identifier into OPC UA Messages.

8.2.2 NamespaceIndex

The namespace is a URI that identifies the naming authority responsible for assigning the identifier element of the NodeId. Naming authorities include the local server, the underlying system, standards bodies and consortia. It is expected that most Nodes will use the URI of the server or of the underlying system.

Using a namespace URI allows multiple OPC UA servers attached to the same underlying system to use the same identifier to identify the same Object. This enables clients that connect to those servers to recognise Objects that they have in common.

Namespace URIs, like server names, are identified by numeric values in OPC UA Services to permit more efficient transfer and processing (e.g. table lookups). The numeric values used to identify namespaces correspond to the index into the NamespaceArray. The NamespaceArray is a Variable that is part of the Server Object in the AddressSpace (see Part 5 for its definition).

The URI for the OPC UA namespace is:

“http://opcfoundation.org/UA/”

Its corresponding index in the namespace table is 0.

8.2.3 IdentifierType

The IdentifierType element identifies the type of the NodeId, its format and its scope. Its values are defined in Table 18.

Table 18 – IdType Values

	Value
	Description

	NUMERIC_0
	Numeric value

	STRING_1
	String value

	GUID_2
	Globally Unique Identifier

	OPAQUE_3
	Namespace specific format

Normally the scope of NodeIds is the server in which they are defined. For certain types of NodeIds, NodeIds can uniquely identify a Node within a system, or across systems (e.g. GUIDs). System-wide and globally-unique identifiers allow clients to track Nodes, such as work orders, as they move between OPC UA servers as they progress through the system.

Opaque identifiers are identifiers that are free-format byte strings that might or might not be human interpretable.

8.2.4 Identifier value

The identifier value element is used within the context of the first three elements to identify the Node. Its data type and format is defined by the IdType.

Identifier values of IdType STRING_1 are restricted to 4096 characters. Identifier values of IdType OPAQUE_3 are restricted to 4096 bytes.
A Null NodeId has special meaning. For example, many services defined in Part 4 define special behaviour if a Null NodeId is passed as a parameter. Each IdType has a set of identifier values that represent a Null NodeId. These values are summarised in Table 19.

Table 19 – NodeId Null Values

	IdType
	Identifier

	NUMERIC_0
	0

	STRING_1
	A Null or Empty String (“”)

	GUID_2
	A Guid initialised with zeros (e.g. 00000000-0000-0000-0000-000000)

	OPAQUE_3
	A ByteString with Length=0

A Null NodeId always has a NamespaceIndex equal to 0.

A Node in the AddressSpace shall not have a Null as its NodeId.

8.3 QualifiedName

This Built-in DataType contains a qualified name. It is, for example, used as BrowseName. Its elements are defined in Table 20. The name part of the QualifiedName is restricted to 512 characters.
Table 20 – QualifiedName Definition

	Name
	Type
	Description

	QualifiedName
	structure
	

	
namespaceIndex
	UInt16
	Index that identifies the namespace that defines the name.

This index is the index of that namespace in the local server’s NamespaceArray.

The client may read the NamespaceArray Variable to access the string value of the namespace.

	
name
	String
	The text portion of the QualifiedName.

8.4 LocaleId

This Simple DataType is specified as a string that is composed of a language component and a country/region component as specified by RFC 3066. The <country/region> component is always preceded by a hyphen. The format of the LocaleId string is shown below:

<language>[-<country/region>], where

<language> is the two letter ISO 639 code for a language,

<country/region> is the two letter ISO 3166 code for the country/region.

The rules for constructing LocaleIds defined by RFC 3066 are restricted as follows:

a) This specification permits only zero or one <country/region> component to follow the <language> component,

b) This specification also permits the “-CHS” and “-CHT” three-letter <country/region> codes for “Simplified” and “Traditional” Chinese locales.

c) This specification also allows the use of other <country/region> codes as deemed necessary by the client or the server.

Table 21 shows examples of OPC UA LocaleIds. Clients and servers always provide LocaleIds that explicitly identify the language and the country/region.

Table 21 –LocaleId Examples

	Locale
	OPC UA LocaleId

	English
	en

	English (US)
	en-US

	German
	de

	German (Germany)
	de-DE

	German (Austrian)
	de-AT

An empty or NULL string indicates that the LocaleId is unknown.

8.5 LocalizedText

This Built-in DataType defines a structure containing a String in a locale-specific translation specified in the identifier for the locale. Its elements are defined in Table 22.
Table 22 – LocalizedText Definition

	Name
	Type
	Description

	LocalizedText
	structure
	

	
text
	String
	The localized text.

	
locale
	LocaleId
	The identifier for the locale (e.g. “en-US”).

8.6 Argument

This Structured DataType defines a Method input or output argument specification. It is for example used in the input and output argument Properties for Methods. Its elements are described in Table 23.

Table 23 – Argument Definition

	Name
	Type
	Description

	Argument
	structure
	

	
name
	String
	The name of the argument

	
dataType
	NodeId
	The NodeId of the DataType of this argument

	
valueRank
	Int32
	Indicates whether the dataType is an array and how many dimensions the array has.
It may have the following values:

n>1: the dataType is an array with the specified number of dimensions.

OneDimension (1): The dataType is an array with one dimension.

OneOrMoreDimensions (0): The dataType is an array with one or more dimensions.

Scalar (-1): The dataType is not an array.

Any (-2): The dataType can be a scalar or an array with any number of dimensions.

ScalarOrOneDimension (-3): The dataType can be a scalar or a one dimensional array.

	
arrayDimensions
	UInt32[]
	Specifies the length of each dimension for an array dataType. It is intended to describe the capability of the dataType, not the current size.
The number of elements shall be equal to the value of the valueRank. Must be null if valueRank <= 0.

A value of 0 for an individual dimension indicates that the dimension has a variable length.

	
description
	LocalizedText
	A localised description of the argument

8.7 BaseDataType

This abstract DataType defines a value that can have any valid DataType.

It defines a special value NULL indicating that a value is not present.

8.8 Boolean

This Built-in DataType defines a value that is either TRUE or FALSE.

8.9 Byte

This Built-in DataType defines a value in the range of 0 to 255.

8.10 ByteString

This Built-in DataType defines a value that is a sequence of Byte values.

8.11 DateTime
This Built-in DataType defines a Gregorian calendar date. Details about this DataType are defined in Part 6.
8.12 Double

This Built-in DataType defines a value that adheres to the IEEE 754 Double Precision data type definition.
8.13 Duration
This Simple DataType is a Double that defines an interval of time in milliseconds (fractions can be used to define sub-millisecond values). Negative values are generally invalid but may have special meanings where the Duration is used.
8.14 Enumeration

This abstract DataType is the base DataType for all enumeration DataTypes like NodeClass defined in 8.29. All DataTypes inheriting from this DataType have a special handling for the encoding as defined in Part 6. All enumeration DataTypes have to inherit from this DataType.
8.15 Float

This Built-in DataType defines a value that adheres to the IEEE 754 Single Precision data type definition.

8.16 Guid

This Built-in DataType defines a value that is a 128-bit Globally Unique Identifier. Details about this DataType are defined in Part 6.
8.17 SByte

This Built-in DataType defines a value that is a signed integer between ‑128 and 127 inclusive.

8.18 IdType

This DataType is an enumeration that identifies the IdType of a NodeId. Its values are defined in Table 18. See 8.2.3 for a description of the use of this DataType in NodeIds.
8.19 Image

This abstract DataType defines a ByteString representing an image.

8.20 ImageBMP

This Simple DataType defines a ByteString representing an image in BMP format.
8.21 ImageGIF

This Simple DataType defines a ByteString representing an image in GIF format.
8.22 ImageJPG

This Simple DataType defines a ByteString representing an image in JPG format. JPG is defined in ISO/IEC IS 10918-1.
8.23 ImagePNG

This Simple DataType defines a ByteString representing an image in PNG format. PNG is defined in ISO/IEC 15948:2003.
8.24 Integer

This abstract DataType defines an integer which length is defined by its subtypes.
8.25 Int16

This Built-in DataType defines a value that is a signed integer between ‑32,768 and 32,767 inclusive.

8.26 Int32

This Built-in DataType defines a value that is a signed integer between ‑2,147,483,648 and 2,147,483,647 inclusive.

8.27 Int64

This Built-in DataType defines a value that is a signed integer between ‑9,223,372,036,854,775,808 and 9,223,372,036,854,775,807 inclusive.
8.28 TimeZoneInfo
This Structured DataType defines the local time that may or may not take daylight saving time into account. Its elements are described in Table 23.

Table 23 – TimeZoneInfo Definition

	Name
	Type
	Description

	TimeZoneInfo
	structure
	

	
offset
	UInt16
	The offset in minutes from UtcTime

	
daylightSavingInOffset
	Boolean
	If TRUE, then daylight saving time (DST) is in effect and offset includes the DST correction. If FALSE then the offset does not include DST correction and DST may or may not have been in effect.

8.29 NamingRuleType
This DataType is an enumeration that identifies the NamingRule (see 6.4.4.2.1). Its values are defined in Table 24.

Table 24 – NamingRuleType Values

	Name

	MANDATORY_1

	OPTIONAL_2

	CONSTRAINT_3

8.30 NodeClass

This DataType is an enumeration that identifies a NodeClass. Its values are defined in Table 25.

Table 25 – NodeClass Values

	Name

	OBJECT_1

	VARIABLE_2

	METHOD_4

	OBJECT_TYPE_8

	VARIABLE_TYPE_16

	REFERENCE_TYPE_32

	DATA_TYPE_64

	VIEW_128

8.31 Number

This abstract DataType defines a number. Details are defined by its subtypes.
8.32 String

This Built-in DataType defines a Unicode character string that should exclude control characters that are not whitespaces (0x00 - 0x08, 0x0E-0x1F or 0x7F).

8.33 Structure

This abstract DataType is the base DataType for all Structured DataTypes like Argument defined in 8.6. All DataTypes inheriting from this DataType have a special handling for the encoding as defined in Part 6. All Structured DataTypes have to inherit from this DataType if they are not defined as primitives in this Part (like NodeId defined in 8.2, a NodeId is structured but treated in a special way as defined in Part 6).
8.34 UInteger

This abstract DataType defines an unsigned integer which length is defined by its subtypes.
8.35 UInt16

This Built-in DataType defines a value that is an unsigned integer between 0 and 65,535 inclusive.

8.36 UInt32

This Built-in DataType defines a value that is an unsigned integer between 0 and 4,294,967,295 inclusive.

8.37 UInt64

This Built-in DataType defines a value that is an unsigned integer between 0 and 18,446,744,073,709,551,615 inclusive.

8.38 UtcTime

This simple DataType is a DateTime used to define Coordinated Universal Time (UTC) values. All time values conveyed between OPC UA servers and clients are UTC values. Clients shall provide any conversions between UTC and local time. Part 6 defines details about this DataType.

8.39 XmlElement

This Built-in DataType is used to define XML elements. Part 6 defines details about this DataType.
XML data can always be modelled as a subtype of the Structure DataType with a single DataTypeEncoding that represents the XML complexType that defines the XML element (it is not necessary to have access to the XML Schema to define a DataTypeEncoding). For this reason a Server should never define Variables that use the XmlElement DataType unless the Server has no information about the XML elements that might be in the Variable Value.
9 Standard EventTypes

9.1 General

The following subclauses define EventTypes. Their representation in the AddressSpace is specified in Part 5. Other parts of this multi-part specification may specify additional EventTypes. Figure 26 informally describes the hierarchy of these EventTypes.

[image: image26.emf]AuditEventType

AuditNodeManagement

EventType

AuditUpdate

EventType

AuditAddNodes

EventType

AuditSecurity

EventType

AuditSession

EventType

AuditChannel

EventType

AuditAddReferences

EventType

AuditDeleteNodes

EventType AuditOpenSecure

ChannelEventType

AuditDelete

ReferencesEventType

AuditActivateSession

EventType

AuditCreateSession

EventType

BaseEventType

SystemEventType

SemanticChange

EventType

BaseModelChange

EventType

GeneralModel

ChangeEventType

DeviceFailure

EventType

AuditUpdateMethod

EventType

AuditHistory

UpdateEventType

AuditWrite

UpdateEventType

AuditCancel

EventType

AuditCertificateData

MismatchEventType

AuditCertificate

InvalidEventType

AuditCertificate

ExpiredEventType

AuditCertificate

MismatchEventType

AuditCertificate

UntrustedEventType

AuditCertificate

RevokedEventType

AuditCertificate

EventType

AuditUrlMismatch

EventType

Figure 26 – Standard EventType Hierarchy

9.2 BaseEventType

The BaseEventType defines all general characteristics of an Event. All other EventTypes derive from it. There is no other semantic associated with this type.

9.3 SystemEventType

SystemEvents are generated as a result of some Event that occurs within the server or by a system that the server is representing.

9.4 AuditEventType

AuditEvents are generated as a result of an action taken on the server by a client of the server. For example, in response to a client issuing a write to a Variable, the server would generate an AuditEvent describing the Variable as the source and the user and client session as the initiators of the Event.

Figure 27 illustrates the defined behaviour of an OPC UA server in response to an auditable action request. If the action is accepted, an action AuditEvent is generated and processed by the server. If the action is not accepted due to security reasons, a security AuditEvent is generated and processed by the server. The server may involve the underlying device or system in the process but it is the server’s responsibility to provide the Event to any interested clients. Clients are free to subscribe to Events from the server and will receive the AuditEvents in response to normal Publish requests.

All action requests include a human readable AuditEntryId. The AuditEntryId is included in the AuditEvent to allow human readers to correlate an Event with the initiating action. The AuditEntryId typically contains who initiated the action and from where it was initiated.

The Server may elect to optionally persist the AuditEvents in addition to the mandatory Event Subscription delivery to clients.

[image: image27.emf]Accept

Request

?

Action Request

Generate

 Action

AuditEvent

Yes

Generate

Security

AuditEvent

No

Event

Notifications

Return Result

Return Error

Accept

Request

?

Publish Request

Return Event

Notifications

No

Generate

Security

AuditEvent

Yes

Return Result Return Error

Perform Action

Figure 27 – Audit Behaviour of a Server

Figure 28 illustrates the expected behaviour of an aggregating server in response to an auditable action request. This use case involves the aggregating server passing on the action to one of its aggregated servers. The general behaviour described above is extended by this behaviour and not replaced. That is, the request could fail and generate a security AuditEvent within the aggregating server. The normal process is to pass the action down to an aggregated server for processing. The aggregated server will, in turn, follow this behaviour or the general behaviour and generate the appropriate AuditEvents. The aggregating server periodically issues publish requests to the aggregated servers. These collected Events are merged with self-generated Events and made available to subscribing clients. If the aggregating server supports the optional persisting of AuditEvent, the collected Events are persisted along with locally-generated Events.

The aggregating server may map the authenticated user account making the request to one of its own accounts when passing on the request to an aggregated server. It shall, however, preserve the AuditEntryId by passing it on as received. The aggregating server may also generate its own AuditEvent for the request prior to passing it on to the aggregated server, in particular, if the aggregating server needs to break a request into multiple requests that are each directed to separate aggregated servers or if part of a request is denied do to security on the aggregating server.

[image: image28.emf]Accept

Request

?

Action Request

Yes

Generate

Security

AuditEvent

No

Event

Notifications

Return Result

Return Error

Accept

Request

?

Publish Request

Return Event

Notifications

No

Generate

Security

AuditEvent

Yes

Return Success Return Error

No

Issue Request to

Aggregated

Server

Request

Timeout

?

Return Error

Yes

Request Publish

Get AuditEvent

Notifications from

Aggregated

servers

Generate Action

AuditEvent if

required

Figure 28 – Audit Behaviour of an Aggregating Server

9.5 AuditSecurityEventType

This is a subtype of AuditEventType and is used only for categorization of security-related Events. This type follows all behaviour of its parent type.

9.6 AuditChannelEventType

This is a subtype of AuditSecurityEventType and is used for categorization of security-related Events from the SecureChannel Service Set defined in Part 4.

9.7 AuditOpenSecureChannelEventType

This is a subtype of AuditChannelEventType and is used for Events generated from calling the OpenSecureChannel Service defined in Part 4.

9.8 AuditSessionEventType

This is a subtype of AuditSecurityEventType and is used for categorization of security-related Events from the Session Service Set defined in Part 4.

9.9 AuditCreateSessionEventType

This is a subtype of AuditSessionEventType and is used for Events generated from calling the CreateSession Service defined in Part 4.
9.10 AuditUrlMismatchEventType

This is a subtype of AuditCreateSessionEventType and is used for Events generated from calling the CreateSession Service defined in Part 4 if the EndpointUrl used in the service call does not match the Server’s HostNames (see Part 4 for details).
9.11 AuditActivateSessionEventType

This is a subtype of AuditSessionEventType and is used for Events generated from calling the ActivateSession Service defined in Part 4.
9.12 AuditCancelEventType

This is a subtype of AuditSessionEventType and is used for Events generated from calling the Cancel Service defined in Part 4.

9.13 AuditCertificateEventType

This is a subtype of AuditSecurityEventType and is used only for categorization of Certificate related Events. This type follows all behaviour of its parent type. These AuditEvents will be generated for Certificate errors in addition to other AuditEvents related to service calls.

9.14 AuditCertificateDataMismatchEventType

This is a subtype of AuditCertificateEventType and is used only for categorization of Certificate related Events. This type follows all behaviour of its parent type. This AuditEvent is generated if the HostName in the URL used to connect to the Server is not the same as one of the HostNames specified in the Certificate or if Application and Software Certificates contain an application or product URI that does not match the URI specified in the ApplicationDescription provided with the Certificate. For more details on Certificates see Part 4.

9.15 AuditCertificateExpiredEventType

This is a subtype of AuditCertificateEventType and is used only for categorization of Certificate related Events. This type follows all behaviour of its parent type. This AuditEvent is generated if the current time is not after the start of the validity period and before the end.

9.16 AuditCertificateInvalidEventType

This is a subtype of AuditCertificateEventType and is used only for categorization of Certificate related Events. This type follows all behaviour of its parent type. This AuditEvent is generated if the certificate structure is invalid or if the Certificate has an invalid signature.

9.17 AuditCertificateUntrustedEventType

This is a subtype of AuditCertificateEventType and is used only for categorization of Certificate related Events. This type follows all behaviour of its parent type. This AuditEvent is generated if the Certificate is not trusted i.e. if the Issuer Certificate is unknown.

9.18 AuditCertificateRevokedEventType

This is a subtype of AuditCertificateEventType and is used only for categorization of Certificate related Events. This type follows all behaviour of its parent type. This AuditEvent is generated if a Certificate has been revoked of if the revocation list is not available (i.e. a network interruption prevents the Application from accessing the list).

9.19 AuditCertificateMismatchEventType

This is a subtype of AuditCertificateEventType and is used only for categorization of Certificate related Events. This type follows all behaviour of its parent type. This AuditEvent is generated if a Certificate set of uses does not match use requested for the Certificate (i.e. Application, Software or CA),
9.20 AuditNodeManagementEventType

This is a subtype of AuditEventType and is used for categorization of node management related Events. This type follows all behaviour of its parent type.

9.21 AuditAddNodesEventType

This is a subtype of AuditNodeManagementEventType and is used for Events generated from calling the AddNodes Service defined in Part 4.

9.22 AuditDeleteNodesEventType

This is a subtype of AuditNodeManagementEventType and is used for Events generated from calling the DeleteNodes Service defined in Part 4.

9.23 AuditAddReferencesEventType

This is a subtype of AuditNodeManagementEventType and is used for Events generated from calling the AddReferences Service defined in Part 4.

9.24 AuditDeleteReferencesEventType

This is a subtype of AuditNodeManagementEventType and is used for Events generated from calling the DeleteReferences Service defined in Part 4.

9.25 AuditUpdateEventType

This is a subtype of AuditEventType and is used for categorization of update related Events. This type follows all behaviour of its parent type.
9.26 AuditWriteUpdateEventType

This is a subtype of AuditUpdateEventType and is used for categorization of write update related Events. This type follows all behaviour of its parent type.

9.27 AuditHistoryUpdateEventType

This is a subtype of AuditUpdateEventType and is used for categorization of history update related Events. This type follows all behaviour of its parent type.

9.28 AuditUpdateMethodEventType

This is a subtype of AuditEventType and is used for categorization of Method related Events. This type follows all behaviour of its parent type.
9.29 DeviceFailureEventType

A DeviceFailureEvent indicates a failure in a device of the underlying system.
9.30 ModelChangeEvents

9.30.1 General
ModelChangeEvents are generated to indicate a change of the AddressSpace structure. The change may consist of adding or deleting a Node or Reference. Although the relationship of a Variable or VariableType to its DataType is not modelled using References, changes to the DataType Attribute of a Variable or VariableType are also considered as model changes and therefore a ModelChangeEvent is generated if the DataType Attribute changes.

9.30.2 NodeVersion Property

There is a correlation between ModelChangeEvents and the NodeVersion Property of Nodes. Every time a ModelChangeEvent is issued for a Node, its NodeVersion shall be changed, and every time the NodeVersion is changed, a ModelChangeEvent shall be generated. A server shall support both the ModelChangeEvent and the NodeVersion Property or neither, but never only one of the two mechanisms.

9.30.3 Views

A ModelChangeEvent is always generated in the context of a View including the default View where the whole AddressSpace is considered. Therefore the only Notifiers which report the ModelChangeEvents are View Nodes and the Server Object representing the default View. Each action generating a ModelChangeEvent may lead to several Events since it may affect different Views. If, for example, a Node was deleted from the AddressSpace, and this Node was also contained in a View “A”, there would be one Event having the AddressSpace as context and another having the View “A” as context. If a Node would only be removed from View “A”, but still exists in the AddressSpace, it would generate only a ModelChangeEvent for View “A”.

If a client does not want to receive duplicates of changes it has to use the filter mechanisms of the Event subscription filtering only for the default View and suppress the ModelChangeEvents having other Views as context.
When a ModelChangeEvent is issued on a View and the View supports the ViewVersion Property, the ViewVersion has to be updated.

9.30.4 Event Compression

An implementation is not required to issue an Event for every update as it occurs. An OPC UA Server may be capable of grouping a series of transactions or simple updates into a larger unit. This series may constitute a logical grouping or a temporal grouping of changes. A single ModelChangeEvent may be issued after the last change of the series, to cover all of the changes. This is referred to as Event compression. A change in the NodeVersion and the ViewVersion may thus reflect a group of changes and not a single change.

9.30.5 BaseModelChangeEventType

The BaseModelChangeEventType is the base type for ModelChangeEvents and does not contain information about the changes but only indicates that changes occurred. Therefore the client shall assume that any or all of the Nodes may have changed.
9.30.6 GeneralModelChangeEventType

The GeneralModelChangeEventType is a subtype of the BaseModelChangeEventType. It contains information about the Node that was changed and the action that occurred the ModelChangeEvent (e.g. add a Node, delete a Node, etc.). If the affected Node is a Variable or Object, the TypeDefinitionNode is also present.

To allow Event compression, a GeneralModelChangeEvent contains an array of this structure.

9.30.7 Guidelines for ModelChangeEvents

Two types of ModelChangeEvents are defined: the BaseModelChangeEvent that does not contain any information about the changes and the GeneralModelChangeEvent that identifies the changed Nodes via an array. The precision used depends on both the capability of the OPC UA server and the nature of the update. An OPC UA server may use either ModelChangeEvent type depending on circumstances. It may also define subtypes of these EventTypes adding additional information.

To ensure interoperability, the following guidelines for Events should be observed:

· If the array of the GeneralModelChangeEvent is present, then it should identify every Node that has changed since the preceding ModelChangeEvent.

· The OPC UA server should emit exactly one ModelChangeEvent for an update or series of updates. It should not issue multiple types of ModelChangeEvent for the same update.

· Any client that responds to ModelChangeEvents should respond to any Event of the BaseModelChangeEventType including its subtypes like the GeneralModelChangeEventType.

If a client is not capable of interpreting additional information of the subtypes of the BaseModelChangeEventType, it should treat Events of these types the same way as Events of the BaseModelChangeEventType.

9.31 SemanticChangeEventType

9.31.1 General

SemanticChangeEvents are generated to indicate a change of the AddressSpace semantics. The change consists of a change to the Value Attribute of a Property.

The SemanticChangeEvent contains information about the Node owning the Property that was changed. If this is a Variable or Object, the TypeDefinitionNode is also present.

The SemanticChange bit of the AccessLevel Attribute of a Property indicates whether changes of the Property value are considered for SemanticChangeEvents (see 5.6.2).
9.31.2 ViewVersion and NodeVersion Properties

The ViewVersion and NodeVersion Properties do not change due to the publication of a SemanticChangeEvent.
9.31.3 Views

SemanticChangeEvents are handled in the context of a View the same way as ModelChangeEvents. This is defined in 9.30.3.
9.31.4 Event Compression

SemanticChangeEvents can be compressed the same way as ModelChangeEvents. This is defined in 9.30.4.
Appendix A (informative): How to use the Address Space Model

A.1 Overview

This Appendix points out some general considerations how the Address Space Model can be used. The Appendix is informative, that is each server vendor can model its data in the appropriated way that fits to its needs. However, it gives some hints the server vendor may consider.

Typically OPC UA servers will offer data provided by an underlying system like a device, a configuration database, an OPC COM server, etc. Therefore the modelling of the data depends on the model of the underlying system as well as the requirements on the clients accessing the OPC UA server. It is also expected that companion specifications will be developed on top of OPC UA with additional rules how to model the data. However, the following subclauses will give some general consideration about the different concepts of OPC UA to model data and when they should be used and when not.

The Appendix of Part 5 gives an overview over the design decisions made when modelling the information about the server defined in Part 5.

A.2 Type definitions

Type definitions should be used whenever it is expected that the type information may be used more than once in the same system or for interoperability between different systems supporting the same type definitions.

A.3 ObjectTypes

5.5.1 states: “Objects are used to represent systems, system components, real-world objects, and software objects.” Therefore ObjectTypes should be used if a type definition of those is useful (see A.2).

From a more abstract point of view Objects are used to group Variables and other Objects in the AddressSpace. Therefore ObjectTypes should be used when some common structures / groups of Objects and / or Variables should be described. Clients can use this knowledge to program against the ObjectType structure and use the TranslateBrowsePathsToNodeIds Service defined in Part 4 on the instances.

Simple objects only having one value (e.g. a simple heat sensor) can also be modelled as VariableTypes. However, extensibility mechanisms should be considered (e.g. a complex heat sensor subtype could have several values) and whether the object should be exposed as an object in the client's GUI or just as a value. Whenever a modeller is in doubt which solution to use the ObjectType having one Variable should be preferred.

A.4 VariableTypes

A.4.1 General

VariableTypes are only used for DataVariables
 and should be used when there are several Variables having the same semantic (e.g. set point). It is not needed to define a VariableType just reflecting the DataType of the Variable, e.g. an “Int32VariableType”.

A.4.2 Properties or DataVariables

Besides the semantic differences of Properties and DataVariables described in Clause 4 there are also syntactic differences. A Property is identified by its BrowseName, i.e. if Properties having the same semantic are used several times, they should always have the same BrowseName. The same semantic of DataVariables is captured in the VariableType.

If it’s not clear what concept to use based on the semantic described in Clause 4, the different syntax can help. The following points identify that it has to be a DataVariable:

· If it’s a complex Variable or it should contain additional information in the form of Properties.

· If the type definition may be refined (subtyping).

· If the type definition should be made available so the client can use the AddNodes Service defined in Part 4 to create new instances of the type definition.

· If it’s a component of a complex Variable exposing a part of the value of the complex Variable.

A.4.3 Many Variables and / or complex DataTypes

When complex data structures should be made available to the client there are basically three different approaches:

1) Create several simple Variables using simple DataTypes always reflecting parts of the simple structure. Objects are used to group the Variables according to the structure of the data.

2) Create a complex DataType and a simple Variable using this DataType.

3) Create a complex DataType and a complex Variable using this DataType and also exposing the complex data structure as Variables of the complex Variable using simple DataTypes.

The advantages of the first approach are that the complex structure of the data is visible in the AddressSpace; a generic client can easily access those data without knowledge of user-defined DataTypes; and the client can access individual parts of the complex data. The disadvantages of the first approach are that accessing the individual data does not provide any transactional context; and for a specific client the server first has to convert the data and the client has to convert the data, again, to get the data structure the underlying system provides.

The advantages of the second approach are, that the data are accessed in a transaction context and the complex DataType can be constructed in a way that the server does not have to convert the data and can pass them directly to the specific client that can directly use them. The disadvantages are that the generic client might not be able to access and interpret the data or has at least the burden to read the DataTypeDescription to interpret the data. The structure of the data is not visible in the AddressSpace; additional Properties describing the data structure cannot be added to the adequate places since they do not exist in the AddressSpace. Individual parts of the data cannot be read without accessing the whole data structure.

The third approach combines both other approaches. Therefore the specific client can access the data in its native format in a transactional context, whereas the generic client can access the simple DataTypes of the components of the complex Variable. The disadvantage is that the server shall be able to provide the native format and also interpret it to be able to provide the information in simple DataTypes.

It is recommended to use the first approach. When a transactional context is needed or the client should be able to get a large amount of data instead of subscribing to several individual values, the third approach is suitable. However, the server might not always have the knowledge to interpret the complex data of the underlying system and therefore has to use the second approach just passing the data to the specific client who is able to interpret the data.

A.5 Views

Server-defined Views can be used to present an excerpt of the AddressSpace suitable for a special class of clients, e.g. maintenance clients, engineering clients, etc. The View only provides the information needed for the purpose of the client and hides unnecessary information.

A.6 Methods

Methods should be used whenever some input is expected and the server delivers a result. One should avoid using Variables to write the input values and other Variables to get the output results as it was needed to do in OPC COM since there was no concept of a Method available. However, a simple OPC COM wrapper might not be able to do this.

Methods can also be used to trigger some execution in the server that does not require input and / or output parameters.

Global Methods, i.e. Methods that cannot directly be assigned to a special Object, should be assigned to the Server Object defined in Part 5.

A.7 Defining ReferenceTypes

Defining new ReferenceTypes should only be done if the predefined ReferenceTypes are not suitable. Whenever a new ReferenceType is defined, the most appropriate ReferenceType should be used as its supertype.

It is expected that servers will have new defined hierarchical ReferenceTypes to expose different hierarchies and new non-hierarchical References to expose relationships between Nodes in the AddressSpace.

A.8 Defining ModellingRules

New ModellingRules have to be defined if the predefined ModellingRules are not appropriated for the model exposed by the server.

Depending on the model used by the underlying system the server may need to define new ModellingRules, since the OPC UA server may only pass the data to the underlying system and this system may use its own internal rules for instantiation, subtyping, etc.

Beside this the predefined ModellingRules might not be sufficient to specify the needed behaviour for instantiation and subtyping.

Appendix B (informative): OPC UA Meta Model in UML

B.1 Background

The OPC UA Meta Model (the OPC UA Address Space Model) is represented by UML classes and UML objects marked with the stereotype <<TypeExtension>>. Those stereotyped UML objects represent DataTypes or ReferenceTypes. The domain model can contain user-defined ReferenceTypes and DataTypes, also marked as <<TypeExtension>>. In addition, the domain model contains ObjectTypes, VariableTypes etc. represented as UML objects (see Figure 29).

The OPC Foundation specifies not only the OPC UA Meta Model, but also defines some Nodes to organise the AddressSpace and to provide information about the server as specified in Part 5.

[image: image29.emf]

Objects

<<TypeExtension>> Objects

Classes

UML Representation

OPC UA Meta Model

Domain Model (incl. user - defined Data and Reference Types)

Figure 29 – Background of OPC UA Meta Model

B.2 Notation

An example of a UML class representing the OPC UA concept Base is given in the UML class diagram in Figure 30. OPC Attributes inherit from the abstract class Attribute and have a value identifying their data type. They are composed to a Node either optional (0..1) or required (1), like BrowseName to Base in Figure 30.

[image: image30.emf] Base

 Attribute

BrowseName

1

Figure 30 – Notation (I)

UML object diagrams are used to display <<TypeExtension>> objects (e.g. HasComponent in Figure 31). In object diagrams, OPC Attributes are represented as UML attributes without data types and marked with the stereotype <<Attribute>>, like InverseName in the UML object HasComponent. They have values, like InverseName =ComponentOf for HasComponent. To keep the object diagrams simple, not all Attributes are shown (e.g. the NodeId of HasComponent).

[image: image32.emf] �

«TypeExtension»

HasComponent :ReferenceType

 �

«Attribute»

+ InverseName = ComponentOf

 �

«TypeExtension»

Aggregates :ReferenceType

 �

«Attribute»

+ IsAbstact = true

+HasSubtype

«Reference»

Figure 31 – Notation (II)

OPC References are represented as UML associations marked with the stereotype <<Reference>>. If a particular ReferenceType is used, its name is used as role name; identifying the direction of the Reference (e.g. Aggregates has the subtype HasComponent). For simplicity, the inverse role name is not shown (in the example SubclassOf). When no role name is provided, it means that any ReferenceType can be used (only valid for class diagrams).

There are some special Attributes in OPC UA containing a NodeId and thereby referencing another Node. Those Attributes are represented as associations marked with the stereotype <<Attribute>>. The name of the Attribute is displayed as role name of the TargetNode.

The value of the OPC Attribute BrowseName is represented by the UML object name, e.g. the BrowseName of the UML object HasComponent in Figure 31 is “HasComponent”.

To highlight the classes explained in a class diagram, they are marked grey (e.g. Base in Figure 30). Only those classes have all their relationships to other classes and attributes shown in the diagram. For the other classes, we provide only those attributes and relationships needed to understand the main classes of the diagram.

B.3 Meta Model

Remark: Other parts of this multi-part specification can extend the OPC UA Meta Model by adding Attributes and defining new ReferenceTypes.

B.3.1 Base
[image: image33.emf] Method

 Base

 Object

 ObjectType

 ReferenceType

 VariableType

 View

 DataType

 Attribute

DisplayName

 Attribute

BrowseName

 Attribute

NodeId

 Attribute

Description

 Variable

 Attribute

NodeClass

 Attribute

WriteMask

 Attribute

UserWriteMask

0..1

0..1

*

«Reference»

+HasProperty

*

0..1

1

1

1

1

Figure 32 – Base
B.3.2 ReferenceType

[image: image35.emf] Base

 ReferenceType

 Attribute

InverseName

 Attribute

Symmetric

 Attribute

IsAbstract

 Variable

1

1

«Reference»

+HasSubtype *

0..1

1

*

«Reference»

+HasProperty

*

Figure 33 – Reference and ReferenceType

If Symmetric is “false” and IsAbstract is “false” an InverseName shall be provided.

B.3.3 Predefined ReferenceTypes

[image: image37.emf] �

«TypeExtension»

HierarchicalReferences :ReferenceType

 �

«Attribute»

+ IsAbstract = true

 �

«TypeExtension»

Aggregates :ReferenceType

 �

«Attribute»

+ IsAbstact = true

 �

«TypeExtension»

HasSubtype :ReferenceType

 �

«Attribute»

+ InverseName = SubtypeOf

 �

«TypeExtension»

HasProperty :ReferenceType

 �

«Attribute»

+ InverseName = PropertyOf

 �

«TypeExtension»

HasComponent :ReferenceType

 �

«Attribute»

+ InverseName = ComponentOf

 �

«TypeExtension»

NonHierarchicalReferences :ReferenceType

 �

«Attribute»

+ IsAbstract = true

 �

«TypeExtension»

HasModellingRule :ReferenceType

 �

«Attribute»

+ InverseName = ModellingRuleOf

 �

«TypeExtension»

HasOrderedComponent :ReferenceType

 �

«Attribute»

+ InverseName = OrderedComponentOf

 �

«TypeExtension»

References :ReferenceType

 �

«Attribute»

+ IsAbstract = true

 �

«TypeExtension»

Organizes :ReferenceType

 �

«Attribute»

+ InverseName = OrganizedBy

 �

«TypeExtension»

HasTypeDefinition :ReferenceType

 �

«Attribute»

+ InverseName = Defines

 �

«TypeExtension»

HasEventSource :ReferenceType

 �

«Attribute»

+ InverseName = EventSourceOf

 �

«TypeExtension»

HasNotifier :ReferenceType

 �

«Attribute»

+ InverseName = NotifierOf

 �

«TypeExtension»

HasDescription :ReferenceType

 �

«Attribute»

+ InverseName = DescriptionOf

 �

«TypeExtension»

HasEncoding :ReferenceType

 �

«Attribute»

+ InverseName = EncodingOf

 �

«TypeExtension»

GeneratesEvent :ReferenceType

 �

«Attribute»

+ InverseName = GeneratedBy

 �

«TypeExtension»

HasChild :ReferenceType

 �

«Attribute»

+ IsAbstract = true

�

Allows no loops

 �

«TypeExtension»

HasModelParent

 �

«Attribute»

+ InverseName = ModelParentOf

+HasSubtype

«Reference»

«Reference»

+HasSubtype

+HasSubtype

«Reference»

+HasSubtype

«Reference»

+HasSubtype

«Reference»

+HasSubtype

«Reference»

+HasSubtype

«Reference»

+HasSubtype

«Reference»

+HasSubtype

«References»

+HasSubtype

«Reference»

+HasSubtype

«Reference»

+HasSubtype

«Reference»

«Reference»

+HasSubtype

«Reference»

+HasSubtype

«Reference»

+HasSubtype

«Reference»

+HasSubtype

«Reference»

+HasSubtype

Figure 34 – Predefined ReferenceTypes

B.3.4 Attributes

[image: image38.emf] Base

 Attribute

 Value

 DataType

 VariableType

 ValueRank

+ Value: Int32

�

The Data Type of Value is specified using a

�

DataType reference from Varaible or

�

VariableType containing the Value attribute to

�

the DataType

 NodeId

+ Value: NodeId

 BrowseName

+ Value: QualifiedName

 DisplayName

+ Value: LocalizedText

 View

 AccessLevel

+ Value: Byte

 Method

 ReferenceType

 Symmetric

+ Value: Boolean

 InverseName

+ Value: LocalizedText

 Description

+ Value: LocalizedText

 IsAbstract

+ Value: Boolean

 ObjectType

 Variable

 NodeClass

+ Value: NodeClass

 Object

 EventNotifier

+ Value: Byte

 MinimumSamplingInterval

+ Value: Int32

 ContainsNoLoops

+ Value: Boolean

 UserAccessLevel

+ Value: Byte

 Executable

+ Value: Boolean

 UserExecutable

+ Value: Boolean

 Historizing

+ Value: Boolean

 WriteMask

+ Value: UInt32

 UserWriteMask

+ Value: UInt32

 ArrayDimensions

- Value: UInt32[]

0..1

1

0..1

0..1

0..1

1

1

1

1

1

0..1

1

1

1

1

1

1

1

1

1

1

0..1

1

0..1

1

1

0..1

1

 Figure 35 – Attributes

There may be more Attributes defined in other parts of this specification.

Attributes used for references, which have a NodeId as DataType, are not shown in this diagram but as stereotyped associations in the other diagrams.

B.3.5 Object and ObjectType

[image: image40.emf] Base

 Object

 ObjectType

 Method

 Attribute

IsAbstract

 Variable

 Attribute

EventNotifier

�

Should only be used for

�

Objects of the ObjectType

�

FolderType

�

Must refer Object of

�

ObjectType

�

ModellingRuleType

�

Must refer the

�

BaseEventType or

�

one of its subtypes

�

Source shall be of type

�

DataTypeEncodingType

�

and target of type

�

DataTypeDescriptionType

*

«Reference»

+HasComponent

*

+HasDescription 0..1

«Reference»

*

«Reference»

+HasComponent *

+HasSubtype *

«Reference»

*

*

«Reference» +HasProperty

*

*

«Reference»

+HasComponent

*

*

«Reference»

+HasComponent

*

*

«Reference»

+HasTypeDefinition

1

«Reference»

+HasModellingRule 0..1

1

1

«Reference»

«Reference»

+HasModelParent

0..1

*

«Reference»

+HasComponent

*

*

«Reference»

+HasComponent

*

«Reference»

+Organizes

*

«Reference»

+GeneratesEvent 0..*

«Reference»

Figure 36 – Object and ObjectType
B.3.6 EventNotifier

[image: image42.emf] Base

 Object

�

Objects used as

�

Notifier, i.e. having the

�

EventNotifier Attribute

�

set to provide Events

«Reference»

+HasEventSource

«Reference»

+HasNotifier

Figure 37 – EventNotifier

B.3.7 Variable and VariableType

[image: image44.emf] Base

 VariableType

 DataType

 Attribute

Value

 Attribute

ValueRank

 Attribute

AccessLevel

 Variable

 ObjectType

 Object

 Attribute

MinimumSamplingInterval

�

Must refer Object of

�

ObjectType

�

ModellingRuleType

 Attribute

IsAbstract

�

Must refer the

�

BaseEventType or

�

one of its subtypes

 Attribute

Historizing

 Attribute

UserAccessLevel

 Attribute

ArrayDimensions

*

«Reference»

+HasProperty

*

0..1 0..1

*

«Reference»

*

*

«Reference»

*

1

1

+HasSubtype *

«Reference»

*

*

«Attribute»

+DataType

1

*

«Attribute»

+DataType

1

*

«Reference»+HasTypeDefinition

1

1

1

0..1

«Reference»

+HasModelParent

0..1

*

«Reference»

+GeneratesEvent

0..*

*

«Reference»

+HasComponent

*

*

«Reference»

+HasComponent *

1

1

0..1

*

«Reference»

+HasModellingRule

0..1

*

«Reference»

+HasComponent

*

*

«Reference»

+HasComponent

*

1

Figure 38 – Variable and VariableType

The DataType of a Variable shall be the same or a subtype of the DataType of its VariableType (referred with HasTypeDefinition).

If a HasProperty points to a Variable from a Base “A” the following constraints apply:

The Variable shall not be the SourceNode of a HasProperty or any other HierarchicalReferences Reference.

All Variables having “A” as the SourceNode of a HasProperty Reference shall have a unique BrowseName in the context of “A”.

B.3.8 Method

[image: image46.emf] Base

 Method

 Object

 ObjectType

 Variable

�

There are two standard

�

properties defined for

�

Methods:

�

InputArguments and

�

OutputArguments

�

Must refer Object of

�

ObjectType

�

ModellingRuleType

 Attribute

Executable

 Attribute

UserExecutable

�

Shall reference the

�

BaseEventType or one

�

of its subtypes

*

«Reference»

+HasProperty

*

*

«Reference»

*

«Reference»

+HasModellingRule 0..1

*

«Reference»

+HasComponent

*

*

«Reference»

+HasComponent

*

*

«Reference»

+HasTypeDefinition

1

1

1

«Reference»

+GeneratesEvent *

«Reference»

+HasModelParent 0..1

Figure 39 – Method

B.3.9 DataType

[image: image48.emf] DataType

 VariableType

 Base

 Variable

 Object

�

Is only allowed to point to

�

Objects of ObjectType

�

DataTypeEncodingType

�

Is only allowed for Objects of ObjectType

�

DataTypeEncodingType pointing to

�

Variables of VariableType

�

DataTypeDescriptionType

 Attribute

IsAbstract

«Reference»

+HasDescription

+HasSubtype

«Reference»

*

«Attribute»

+DataType

1

*

«Attribute»

+DataType

1

*

«Reference»

+HasProperty *

1

0..1

«Reference»

+HasEncoding

*

Figure 40 – DataType

B.3.10 View

f[image: image50.emf] Base

 View

 Variable

 Attribute

EventNotifier

 Attribute

ContainsNoLoops

1

1

*

«Reference»

+HierarchicalReferences *

*

«Reference»

+HasProperty

*

Figure 41 – View

Appendix C (normative): OPC Binary Type Description System

C.1 Concepts

The OPC Binary XML Schema defines the format of OPC Binary TypeDictionaries. Each OPC Binary TypeDictionary is an XML document that contains one or more TypeDescriptions that describe the format of a binary-encoded value. Applications that have no advance knowledge of a particular binary encoding can use the OPC Binary TypeDescription to interpret or construct a value.

The OPC Binary Type Description System does not define a standard mechanism to encode data in binary. It only provides a standard way to describe an existing binary encoding. Many binary encodings will have a mechanism to describe types that could be encoded; however, these descriptions are useful only to applications that have knowledge of the type description system used with each binary encoding. The OPC Binary Type Description System is a generic syntax that can be used by any application to interpret any binary encoding.

The OPC Binary Type Description System was originally defined in the OPC Complex Data Specification. The OPC Binary Type Description System described in this Annex is quite different and is correctly described as the OPC Binary Type Description System Version 2.0.

Each TypeDescription is identified by a TypeName which shall be unique within the TypeDictionary that defines it. Each TypeDictionary also has a TargetNamespace which should be unique among all OPC Binary TypeDictionaries. This mean that the TypeName qualified with the TargetNamespace for the dictionary should be a globally-unique identifier for a TypeDescription.
Figure 42 below illustrates the structure of an OPC Binary TypeDictionary.

[image: image52.emf]TypeDictionary TypeDictionary

Imports

StructuredType OpaqueType

EnumeratedType

Contains

TypeDescription

FieldType

References

Is Subtype Of

Contains Is Subtype Of

Figure 42 – OPC Binary Dictionary Structure

Each binary encoding is built from a set of opaque building blocks that are either primitive types with a fixed length or variable-length types with a structure that is too complex to describe properly in an XML document. These building blocks are described with an OpaqueType. An instance of one of these building blocks is a binary-encoded value.

The OPC Binary Type Description System defines a set of standard OpaqueTypes that all OPC Binary TypeDictionaries should use to build their TypeDescriptions. These standard type descriptions are described in C.3.

In some cases, the binary encoding described by an OpaqueType may have a fixed size which would allow an application to skip an encoded value that it does not understand. If that is the case, the LengthInBits attribute should be specified for the OpaqueType. If authors of TypeDictionaries need to define new OpaqueTypes that do not have a fixed size then they should use the documentation elements to describe how to encode binary values for the type. This description should provide enough detail to allow a human to write a program that can interpret instances of the type.

A StructuredType breaks a complex value into a sequence of values that are described by a FieldType. Each FieldType has a name, type and a number of qualifiers that specify when the field is used and how many instances of the type exist. A FieldType is described completely in C.2.6.
An EnumeratedType describes a numeric value that has a limited set of possible values, each of which has a descriptive name. EnumeratedTypes provide a convenient way to capture semantic information associated with what would otherwise be an opaque numeric value.

C.2 Schema Description

C.2.1 TypeDictionary

The TypeDictionary element is the root element of an OPC Binary dictionary. The components of this element are described in Table 26
Table 26 – TypeDictionary Components

	Name
	Type
	Description

	Documentation
	Documentation
	An element that contains human-readable text and XML that provides an overview of what is contained in the dictionary.

	Import
	ImportDirective[]
	Zero or more elements that specify other TypeDictionaries that are referenced by StructuredTypes defined in the dictionary. Each import element specifies the NamespaceURI of the TypeDictionary being imported. The TypeDictionary element shall declare an XML namespace prefix for each imported namespace.

	TargetNamespace
	xs:string
	Specifies the URI that qualifies all TypeDescriptions defined in the dictionary.

	DefaultByteOrder
	ByteOrder
	Specifies the default ByteOrder for all TypeDescriptions that have the ByteOrderSignificant attribute set to “true”.

This value overrides the setting in any imported TypeDictionary.

This value is overridden by the DefaultByteOrder specified on a TypeDescription.

	TypeDescription
	TypeDescription[]
	One or more elements that describe the structure of a binary encoded value.

A TypeDescription is an abstract type. A dictionary may only contain the OpaqueType, EnumeratedType and StructuredType elements.

C.2.2 TypeDescription

A TypeDescription describes the structure of a binary encoded value. A TypeDescription is an abstract base type and only instances of sub-types may appear in a TypeDictionary. The components of a TypeDescription are described in Table 27
Table 27 – TypeDescription Components

	Name
	Type
	Description

	Documentation
	Documentation
	An element that contains human readable text and XML that describes the type. This element should capture any semantic information that would help a human understand what is contained in the value.

	Name
	xs: NCName
	An attribute that specifies a name for the TypeDescription that is unique within the dictionary. The fields of structured types reference TypeDescriptions by using this name qualified with the dictionary namespace URI.

	DefaultByteOrder
	ByteOrder
	An attribute that specifies the default ByteOrder for the type description.

This value overrides the setting in any TypeDictionary or in any StructuredType that references the type description.

C.2.3 OpaqueType

An OpaqueType describes a binary encoded value that is either a primitive fixed length type or that has a structure too complex to capture in an OPC Binary type dictionary. Authors of type dictionaries should avoid defining OpaqueTypes that do not have a fixed length because it would prevent applications from interpreting values that use these types without having built-in knowledge of the OpaqueType. The OPC Binary Type Description System defines many standard OpaqueTypes that should allow authors to describe most binary encoded values as StructuredTypes.

The components of an OpaqueTypeDescription are described in Table 28.

Table 28 – OpaqueType Components

	Name
	Type
	Description

	TypeDescription
	TypeDescription
	An OpaqueType inherits all elements and attributes defined for a TypeDescription in Table 27.

	LengthInBits
	xs:string
	An attribute which specifies the length of the OpaqueType in bits. This value should always be specified. If this value is not specified the Documentation element should describe the encoding in a way that a human understands.

	ByteOrderSignificant
	xs:boolean
	An attribute that indicates whether byte order is significant for the type.

If byte order is significant then the application shall determine the byte order to use for the current context before interpreting the encoded value. The application determines the byte order by looking for the DefaultByteOrder attribute specified for containing StructuredTypes or the TypeDictionary. If StructuredTypes are nested the inner StructuredTypes override the byte order of the outer descriptions.

If the DefaultByteOrder attribute is specified for the OpaqueType, then the ByteOrder is fixed and does not change according to context.

If this attribute is “true”, then the LengthInBits attribute shall be specified and it shall be an integer multiple of 8 bits.

C.2.4 EnumeratedType

An EnumeratedType describes a binary-encoded numeric value that has a fixed set of valid values. The encoded binary value described by an EnumeratedType is always an unsigned integer with a length specified by the LengthInBits attribute.

The names for each of the enumerated values are not required to interpret the binary encoding, however, they form part of the documentation for the type.

The components of an EnumeratedType are described in Table 29.

Table 29 – EnumeratedType Components

	Name
	Type
	Description

	OpaqueType
	OpaqueTypeDescription
	An EnumeratedType inherits all elements and attributes defined for a TypeDescription in Table 27 and for an OpaqueType defined in Table 28.

The LengthInBits attribute shall always be specified.

	EnumeratedValue
	EnumeratedValue
	One or more elements that describe the possible values for the instances of the type.

C.2.5 StructuredType

A StructuredType describes a type as a sequence of binary-encoded values. Each value in the sequence is called a Field. Each Field references a TypeDescription that describes the binary-encoded value that appears in the field. A Field may specify that zero, one or multiple instances of the type appear within the sequence described by the StructuredType.
Authors of type dictionaries should use StructuredTypes to describe a variety of common data constructs including arrays, unions and structures.

Some fields have lengths that are not multiples of 8 bits. Several of these fields may appear in a sequence in a structure, however, the total number of bits used in the sequence shall be fixed and it shall be a multiple of 8 bits. Any field which does not have a fixed length shall be aligned on a byte boundary.

A sequence of fields which do not line up on byte boundaries are specified from the least significant bit to the most significant bit. Sequences which are longer than one byte overflow from the most significant bit of the first byte into the least significant bit of the next byte.
The components of a StructuredType are described in Table 30.

Table 30 – StructuredType Components

	Name
	Type
	Description

	TypeDescription
	TypeDescription
	A StructuredType inherits all elements and attributes defined for a TypeDescription in Table 27.

	Field
	FieldType
	One or more elements that describe the fields of the structure. Each field shall have a name that is unique within the StructuredType. Some fields may reference other fields in the StructuredType by using this name.

	anyAttribute
	*
	Authors of a TypeDictionary may add their own attributes to any StructuredType that shall be qualified with a namespace defined by the author. Applications should not be required to understand these attributes in order to interpret a binary encoded instance of the type.

C.2.6 FieldType
A FieldType describes a binary encoded value that appears in sequence within a StructuredType. Every FieldType shall reference a TypeDescription that describes the encoded value for the field.

A FieldType may specify an array of encoded values.

Fields may be optional and they reference other FieldTypes, which indicate if they are present in any specific instance of the type.

The components of a FieldType are described in Table 31.

Table 31 – FieldType Components

	Name
	Type
	Description

	Documentation
	Documentation
	An element that contains human readable text and XML that describes the field. This element should capture any semantic information that would help a human understand what is contained in the field.

	Name
	xs:string
	An attribute that specifies a name for the Field that is unique within the StructuredType.

Other fields in the structured type reference a Field by using this name.

	TypeName
	xs:QName
	An attribute that specifies the TypeDescription that describes the contents of the field. A field may contain zero or more instances of this type depending on the settings for the other attributes and the values in other fields

	Length
	xs:unsignedInt
	An attribute that indicates length of the field. This value may be the total number of encoded bytes or it may be the number of instances of the type referenced by the field. The IsLengthInBytes attributes specifies which of these definitions applies.

	LengthField
	xs:string
	An attribute that indicates which other field in the StructuredType specifies the length of the field. The length of the field may be in bytes or it may be the number of instances of the type referenced by the field. The IsLengthInBytes attributes specifies which of these definitions applies.

If this attribute refers to a field that is not present in an encoded value, then the default value for the length is 1. This situation could occur if the field referenced is an optional field (see the SwitchField attribute).

The length field shall be a fixed length Base-2 representation of an integer. If the length field is one of the standard signed integer types and the value is a negative integer, then the field is not present in the encoded stream.

The FieldType referenced by this attribute shall precede the field with the StructuredType.

	IsLengthInBytes
	xs:boolean
	An attribute that indicates whether the Length or LengthField attributes specify the length of the field in bytes or in the number of instances of the type referenced by the field.

	SwitchField
	xs:string
	If this attribute is specified, then the field is optional and many not appear in every instance of the encoded value.

This attribute specifies the name of another Field that controls whether this field is present in the encoded value. The field referenced by this attribute shall be an integer value (see the LengthField attribute).

The current value of the switch field is compared to the SwitchValue attribute using the SwitchOperand. If the condition evaluates to true then the field appears in the stream.

If the SwitchValue attribute is not specified, then this field is present if the value of the switch field is non-zero. The SwitchOperand field is ignored if it is present.

If the SwitchOperand attribute is missing, then the field is present if the value of the switch field is equal to the value of the SwitchValue attribute.
The Field referenced by this attribute shall precede the field with the StructuredType.

	SwitchValue
	xs:unsignedInt
	This attribute specifies when the field appears in the encoded value. The value of the field referenced by the SwitchName attribute is compared using the SwitchOperand attribute to this value. The field is present if the expression evaluates to true. The field is not present otherwise.

	SwitchOperand
	xs:string
	This attribute specifies how the value of the switch field should be compared to the switch value attribute. This field is an enumeration with the following values:

Equal

SwitchField is equal to the SwitchValue.

GreaterThan

SwitchField is greater than the SwitchValue.

LessThan

SwitchField is less than the SwitchValue.

GreaterThanOrEqual

SwitchField is greater than or equal to the SwitchValue.

LessThanOrEqual

SwitchField is less than or equal to the SwitchValue.

NotEqual

SwitchField is not equal to the SwitchValue.

In each case the field is present if the expression is true.

	Terminator
	xs:hexBinary
	This attribute indicates that the field contains one or more instances of TypeDescription referenced by this field and that the last value has the binary encoding specified by the value of this attribute.

If this attribute is specified then the TypeDescription referenced by this field shall either have a fixed byte order (i.e. byte order is not significant or explicitly specified) or the containing StructuredType shall explicitly specify the byte order.

Examples:

Field Data Type
Terminator
Byte Order
Hexadecimal String

Char

tab character
not applicable
09

WideChar:
tab character
BigEndian
0009

WideChar:
tab character
LittleEndian
0900

Int16

1

BigEndian
0001

Int16

1

LittleEndian
0100

	anyAttribute
	*
	Authors of a TypeDictionary may add their own attributes to any FieldType which shall be qualified with a namespace defined by the authors. Applications should not be required to understand these attributes in order to interpret a binary encoded field value.

C.2.7 EnumeratedValue

An EnumeratedValue describes a possible value for an EnumeratedType.

The components of an EnumeratedValue are described in Table 32.

Table 32 – EnumeratedValue Components

	Name
	Type
	Description

	Name
	xs:string
	This attribute specifies a descriptive name for the enumerated value.

	Value
	xs:unsignedInt
	This attribute specifies the numeric value that could appear in the binary encoding.

C.2.8 ByteOrder

A ByteOrder is an enumeration that describes a possible value byte orders for TypeDescriptions that allow different byte orders to be used. There are two possible values: BigEndian and LittleEndian. BigEndian indicates the most significant byte appears first in the binary encoding. LittleEndian indicates that the least significant byte appears first.

C.2.9 ImportDirective

An ImportDirective specifies a TypeDictionary that is referenced by FiledDescriptions defined in the current dictionary.

The components of an ImportDirective are described in Table 33.

Table 33 – ImportDirective Components

	Name
	Type
	Description

	Namespace
	xs:string
	This attribute specifies the TargetNamespace for the TypeDictionary being imported. This may be a well-known URI which means applications need not have access to the physical file to recognise types that are referenced.

	Location
	xs:string
	This attribute specifies the physical location of the XML file containing the TypeDictionary to import. This value could be a URL for a network resource, a NodeId in an OPC UA server address space or a local file path.

C.3 Standard Type Descriptions

The OPC Binary Type Description System defines a number of standard type descriptions that can be used to describe many common binary encodings using a StructuredType. The standard type descriptions are described in

Table 34 – Standard Type Descriptions

	Type Name
	Description

	Bit
	A single bit value.

	Boolean
	A two-state logical value represented as an 8-bit value.

	SByte
	An 8-bit signed integer.

	Byte
	An 8-bit unsigned integer.

	Int16
	A 16-bit signed integer.

	UInt16
	A 16-bit unsigned integer.

	Int32
	A 32-bit signed integer.

	UInt32
	A 32-bit unsigned integer.

	Int64
	A 64-bit signed integer.

	UInt64
	A 64-bit unsigned integer.

	Float
	An IEEE-754 single precision floating point value.

	Double
	An IEEE-754 double precision floating point value.

	Char
	An 8-bit UTF-8 character value.

	WideChar
	A 16-bit UTF-16 character value.

	String
	A null terminated sequence of UTF-8 characters.

	CharArray
	A sequence of UTF-8 characters preceded by the number of characters.

	WideString
	A null terminated sequence of UTF-16 characters.

	WideCharArray
	A sequence of UTF-16 characters preceded by the number of characters.

	DateTime
	A 64-bit signed integer representing the number of 100 nanoseconds intervals since 1601-01-01 00:00:00. This is the same as the WIN32 FILETIME type.

	ByteString
	A sequence of bytes preceded by its length in bytes.

	Guid
	A 128-bit structured type that represents a WIN32 GUID value.

C.4 Type Description Examples

1. A 128-bit signed integer.

<opc:OpaqueType Name="Int128" LengthInBits="128">

 <opc:Documentation>A 128-bit signed integer.</opc:Documentation>

</opc:OpaqueType>

2. A 16-bit value divided into several fields.

<opc:StructuredType Name="Quality">

 <opc:Documentation>An OPC COM-DA quality value.</opc:Documentation>

 <opc:Field Name="LimitBits" TypeName="opc:Bit" Length="2" />

 <opc:Field Name="QualityBits" TypeName="opc:Bit" Length="6"/>

 <opc:Field Name="VendorBits" TypeName="opc:Byte" />

</opc:StructuredType>

When using bit fields, the least significant bits within a byte shall appear first.

3. A structured type with optional fields.

<opc:StructuredType Name="DataValue">

 <opc:Documentation>A value with an associated timestamp, and quality.</opc:Documentation>

 <opc:Field Name="ValueSpecified" TypeName="Bit" />

 <opc:Field Name="StatusCodeSpecified" TypeName="Bit" />

 <opc:Field Name="TimestampSpecified" TypeName="Bit" />

 <opc:Field Name="Reserved1" TypeName="Bit" Length="5" />

 <opc:Field Name="Value" TypeName="Variant" SwitchField="ValueSpecified" />

 <opc:Field Name="Quality" TypeName="Quality" SwitchField="StatusCodeSpecified" />

 <opc:Field Name="Timestamp" TypeName="opc:DateTime" SwitchField="SourceTimestampSpecified" />

</opc:StructuredType>

It is necessary to explictly specify any padding bits required to ensure subsequent fields line up on byte boundaries.

4. An array of integers.

<opc:StructuredType Name="IntegerArray">

 <opc:Documentation>An array of integers prefixed by its length.</opc:Documentation>

 <opc:Field Name="Size" TypeName="opc:Int32" />

 <opc:Field Name="Array" TypeName="opc:Int32" LengthField="Size" />

</opc:StructuredType>

Nothing is encoded for the Array field if the Size field has a value <= 0.

5. An array of integers with a terminator instead of a length prefix.

<opc:StructuredType Name="IntegerArray" DefaultByteOrder="LittleEndian">

 <opc:Documentation>An array of integers terminated with a known value.</opc:Documentation>

 <opc:Field Name="Value" TypeName="opc:Int16" Terminator="FF7F" />

</opc:StructuredType>

The terminator is 32,767 converted to hexadecimal with LittleEndian byte order.

6. A simple union.

<opc:StructuredType Name="Variant">

 <opc:Documentation>A union of several types.</opc:Documentation>

 <opc:Field Name="ArrayLengthSpecified" TypeName="opc:Bit" Length="1"/>

 <opc:Field Name="VariantType" TypeName="opc:Bit" Length="7" />

 <opc:Field Name="ArrayLength" TypeName="opc:Int32"

 SwitchField="ArrayLengthSpecified" />

 <opc:Field Name="Int32" TypeName="opc:Int32" LengthField="ArrayLength"

 SwitchField="VariantType" SwitchValue="1" />

 <opc:Field Name="String" TypeName="opc:String" LengthField="ArrayLength"

 SwitchField="VariantType" SwitchValue="2" />

 <opc:Field Name="DateTime" TypeName="opc:DateTime" LengthField="ArrayLength"

 SwitchField="VariantType" SwitchValue="3" />

</opc:StructuredType>

The ArrayLength field is optional. If it is not present in an encoded value, then the length of all fields with LengthField set to “ArrayLength” have a length of 1.

It is valid for the the VariantType field to have a value that has no matching field defined. This simply means all optional fields are not present in the encoded value.

7. An enumerated type.

<opc:EnumeratedType Name="TrafficLight" LengthInBits="32">

 <opc:Documentation>The possible colours for a traffic signal.</opc:Documentation>

 <opc:EnumeratedValue Name="Red" Value="4">

 <opc:Documentation>Red says stop immediately.</opc:Documentation>

 </opc:EnumeratedValue>

 <opc:EnumeratedValue Name="Yellow" Value="3">

 <opc:Documentation>Yellow says prepare to stop.</opc:Documentation>

 </opc:EnumeratedValue>

 <opc:EnumeratedValue Name="Green" Value="2">

 <opc:Documentation>Green says you may proceed.</opc:Documentation>

 </opc:EnumeratedValue>

</opc:EnumeratedType>

The documentation element is used to provide human readable description of the type and values.

8. A nillable array.

<opc:StructuredTypen Name="NillableArray">

 <opc:Documentation>An array where a length of -1 means null.</opc:Documentation>

 <opc:Field Name="Length" TypeName="opc:Int32" />

 <opc:Field

 Name="Int32"

 TypeName="opc:Int32"

 LengthField="Length"

 SwitchField="Length"

 SwitchValue="0"

 SwitchOperand="GreaterThanOrEqual" />

</opc:StructuredType>

If the length of the array is -1 then the array does not appear in the stream.

C.5 OPC Binary XML Schema

<?xml version="1.0" encoding="utf-8" ?>

<xs:schema

 targetNamespace="http://opcfoundation.org/BinarySchema/"

 elementFormDefault="qualified"

 xmlns="http://opcfoundation.org/BinarySchema/"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

>

 <xs:element name="Documentation">

 <xs:complexType mixed="true">

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:any minOccurs="0" maxOccurs="unbounded"/>

 </xs:choice>

 <xs:anyAttribute/>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="ImportDirective">

 <xs:attribute name="Namespace" type="xs:string" use="optional" />

 <xs:attribute name="Location" type="xs:string" use="optional" />

 </xs:complexType>

 <xs:simpleType name="ByteOrder">

 <xs:restriction base="xs:string">

 <xs:enumeration value="BigEndian" />

 <xs:enumeration value="LittleEndian" />

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="TypeDescription">

 <xs:sequence>

 <xs:element ref="Documentation" minOccurs="0" maxOccurs="1" />

 </xs:sequence>

 <xs:attribute name="Name" type="xs:NCName" use="required" />

 <xs:attribute name="DefaultByteOrder" type="ByteOrder" use="optional" />

 </xs:complexType>

 <xs:complexType name="OpaqueType">

 <xs:complexContent>

 <xs:extension base="TypeDescription">

 <xs:attribute name="LengthInBits" type="xs:int" use="optional" />

 <xs:attribute name="ByteOrderSignificant" type="xs:boolean" default="false" />

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="EnumeratedValue">

 <xs:sequence>

 <xs:element ref="Documentation" minOccurs="0" maxOccurs="1" />

 </xs:sequence>

 <xs:attribute name="Name" type="xs:string" use="optional" />

 <xs:attribute name="Value" type="xs:unsignedInt" use="optional" />

 </xs:complexType>

 <xs:complexType name="EnumeratedType">

 <xs:complexContent>

 <xs:extension base="OpaqueTypeDescription">

 <xs:sequence>

 <xs:element name="EnumeratedValue" type="EnumeratedValueDescription" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:simpleType name="SwitchOperand">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Equals" />

 <xs:enumeration value="GreaterThan" />

 <xs:enumeration value="LessThan" />

 <xs:enumeration value="GreaterThanOrEqual" />

 <xs:enumeration value="LessThanOrEqual" />

 <xs:enumeration value="NotEqual" />

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="FieldType">

 <xs:sequence>

 <xs:element ref="Documentation" minOccurs="0" maxOccurs="1" />

 </xs:sequence>

 <xs:attribute name="Name" type="xs:string" use="required" />

 <xs:attribute name="TypeName" type="xs:QName" use="optional" />

 <xs:attribute name="Length" type="xs:unsignedInt" use="optional" />

 <xs:attribute name="LengthField" type="xs:string" use="optional" />

 <xs:attribute name="IsLengthInBytes" type="xs:boolean" default="false" />

 <xs:attribute name="SwitchField" type="xs:string" use="optional" />

 <xs:attribute name="SwitchValue" type="xs:unsignedInt" use="optional" />

 <xs:attribute name="SwitchOperand" type="SwitchOperand" use="optional" />

 <xs:attribute name="Terminator" type="xs:hexBinary" use="optional" />

 <xs:anyAttribute processContents="lax" />

 </xs:complexType>

 <xs:complexType name="StructuredType">

 <xs:complexContent>

 <xs:extension base="TypeDescription">

 <xs:sequence>

 <xs:element name="Field" type="FieldType" minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>

 <xs:anyAttribute processContents="lax" />

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="TypeDictionary">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Documentation" minOccurs="0" maxOccurs="1" />

 <xs:element name="Import" type="ImportDirective" minOccurs="0" maxOccurs="unbounded" />

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element name="OpaqueType" type="OpaqueType" />

 <xs:element name="EnumeratedType" type="EnumeratedType" />

 <xs:element name="StructuredType" type="StructuredType" />

 </xs:choice>

 </xs:sequence>

 <xs:attribute name="TargetNamespace" type="xs:string" use="required" />

 <xs:attribute name="DefaultByteOrder" type="ByteOrder" use="optional" />

 </xs:complexType>

 </xs:element>

</xs:schema>

C.6 OPC Binary Standard TypeDictionary

<?xml version="1.0" encoding="utf-8"?>

<opc:TypeDictionary

 xmlns="http://opcfoundation.org/BinarySchema/"

 xmlns:opc="http://opcfoundation.org/BinarySchema/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 TargetNamespace="http://opcfoundation.org/BinarySchema/"

>

 <opc:Documentation>This dictionary defines the standard types used by the OPC Binary type description system.</opc:Documentation>

 <opc:OpaqueType Name="Bit" LengthInBits="1">

 <opc:Documentation>A single bit.</opc:Documentation>

 </opc:OpaqueType>

 <opc:OpaqueType Name="Boolean" LengthInBits="8">

 <opc:Documentation>A two state logical value represented as a 8-bit value.</opc:Documentation>

 </opc:OpaqueType>

 <opc:OpaqueType Name="SByte" LengthInBits="8">

 <opc:Documentation>An 8-bit signed integer.</opc:Documentation>

 </opc:OpaqueType>

 <opc:OpaqueType Name="Byte" LengthInBits="8">

 <opc:Documentation>A 8-bit unsigned integer.</opc:Documentation>

 </opc:OpaqueType>

 <opc:OpaqueType Name="Int16" LengthInBits="16" ByteOrderSignificant="true">

 <opc:Documentation>A 16-bit signed integer.</opc:Documentation>

 </opc:OpaqueType>

 <opc:OpaqueType Name="UInt16" LengthInBits="16" ByteOrderSignificant="true">

 <opc:Documentation>A 16-bit unsigned integer.</opc:Documentation>

 </opc:OpaqueType>

 <opc:OpaqueType Name="Int32" LengthInBits="32" ByteOrderSignificant="true">

 <opc:Documentation>A 32-bit signed integer.</opc:Documentation>

 </opc:OpaqueType>

 <opc:OpaqueType Name="UInt32" LengthInBits="32" ByteOrderSignificant="true">

 <opc:Documentation>A 32-bit unsigned integer.</opc:Documentation>

 </opc:OpaqueType>

 <opc:OpaqueType Name="Int64" LengthInBits="32" ByteOrderSignificant="true">

 <opc:Documentation>A 64-bit signed integer.</opc:Documentation>

 </opc:OpaqueType>

 <opc:OpaqueType Name="UInt64" LengthInBits="64" ByteOrderSignificant="true">

 <opc:Documentation>A 64-bit unsigned integer.</opc:Documentation>

 </opc:OpaqueType>

 <opc:OpaqueType Name="Float" LengthInBits="32" ByteOrderSignificant="true">

 <opc:Documentation>An IEEE-754 single precision floating point value.</opc:Documentation>

 </opc:OpaqueType>

 <opc:OpaqueType Name="Double" LengthInBits="64" ByteOrderSignificant="true">

 <opc:Documentation>An IEEE-754 double precision floating point value.</opc:Documentation>

 </opc:OpaqueType>

 <opc:OpaqueType Name="Char" LengthInBits="8">

 <opc:Documentation>A 8-bit character value.</opc:Documentation>

 </opc:OpaqueType>

 <opc:StructuredType Name="String">

 <opc:Documentation>A UTF-8 null terminated string value.</opc:Documentation>

 <opc:Field Name="Value" TypeName="Char" Terminator="00" />

 </opc:StructuredType>

 <opc:StructuredType Name="CharArray">

 <opc:Documentation>A UTF-8 string prefixed by its length in characters.</opc:Documentation>

 <opc:Field Name="Length" TypeName="Int32" />

 <opc:Field Name="Value" TypeName="Char" LengthField="Length" />

 </opc:StructuredType>

 <opc:OpaqueType Name="WideChar" LengthInBits="16" ByteOrderSignificant="true">

 <opc:Documentation>A 16-bit character value.</opc:Documentation>

 </opc:OpaqueType>

 <opc:StructuredType Name="WideString">

 <opc:Documentation>A UTF-16 null terminated string value.</opc:Documentation>

 <opc:Field Name="Value" TypeName="WideChar" Terminator="0000" />

 </opc:StructuredType>

 <opc:StructuredType Name="WideCharArray">

 <opc:Documentation>A UTF-16 string prefixed by its length in characters.</opc:Documentation>

 <opc:Field Name="Length" TypeName="Int32" />

 <opc:Field Name="Value" TypeName="WideChar" LengthField="Length" />

 </opc:StructuredType>

 <opc:StructuredType Name="ByteString">

 <opc:Documentation>An array of bytes prefixed by its length.</opc:Documentation>

 <opc:Field Name="Length" TypeName="Int32" />

 <opc:Field Name="Value" TypeName="Byte" LengthField="Length" />

 </opc:StructuredType>

 <opc:OpaqueType Name="DateTime" LengthInBits="64" ByteOrderSignificant="true">

 <opc:Documentation>The number of 100 nanosecond intervals since January 01, 1601.</opc:Documentation>

 </opc:OpaqueType>

 <opc:StructuredType Name="Guid">

 <opc:Documentation>A 128-bit globally unique identifier.</opc:Documentation>

 <opc:Field Name="Data1" TypeName="UInt32" />

 <opc:Field Name="Data2" TypeName="UInt16" />

 <opc:Field Name="Data3" TypeName="UInt16" />

 <opc:Field Name="Data4" TypeName="Byte" Length="8" />

 </opc:StructuredType>

</opc:TypeDictionary>

Appendix D (normative): Graphical Notation

D.1 Scope

This Appendix defines a graphical notation for OPC UA data. This Appendix is normative, i.e. the notation is used in the specification to expose examples of OPC UA data. However, it is not required to use this notation to expose OPC UA data.

The graphical notation is able to expose all structural data of OPC UA. Nodes, their Attributes including their current value and References between the Nodes including the ReferenceType can be exposed. The graphical notation provides no mechanism to expose events or historical data.
D.2 Notation

D.2.1 Overview

The notation is divided into two parts. The simple notation only provides a simplified view on the data hiding some details like Attributes. The extended notation allows exposing all structure information of OPC UA, including Attribute values. The simple and the extended notation can be combined to expose OPC UA data in one figure. The following subsections describe the simple and the complex notation.

Common to both notations is that neither any colour nor the thickness or stile of lines is relevant for the notation. Those effects can be used to highlight certain aspects of a figure.
D.2.2 Simple Notation

Depending on their NodeClass Nodes are represented by different graphical forms as defined in Table 35.
Table 35 – Notation of Nodes depending on the NodeClass

	NodeClass
	Graphical Representation
	Comment

	Object
	
[image: image53.emf]Object

	Rectangle including text representing the string-part of the DisplayName of the Object. The font shall not be set to italic.

	ObjectType
	
[image: image54.emf]ObjectType

	Shadowed rectangle including text representing the string-part of the DisplayName of the ObjectType. The font shall be set to italic.

	Variable
	
[image: image55.emf]Variable

	Rectangle with rounded corners including text representing the string-part of the DisplayName of the Variable. The font shall not be set to italic.

	VariableType
	
[image: image56.emf]VariableType

	Shadowed rectangle with rounded corners including text representing the string-part of the DisplayName of the VariableType. The font shall be set to italic.

	DataType
	
[image: image57.emf]DataType

	Shadowed hexagon including text representing the string-part of the DisplayName of the DataType.

	ReferenceType
	
[image: image58.emf]ReferenceType

	Shadowed six-sided polygon including text representing the string-part of the DisplayName of the ReferenceType.

	Method
	
[image: image59.emf]Method

	Oval including text representing the string-part of the DisplayName of the Method.

	View
	
[image: image60.emf]View

	Trapezium including text representing the string-part of the DisplayName of the View.

References are represented as lines between Nodes as exemplified in Figure 43. Those lines can vary in their form. They do not have to connect the Nodes with a straight line; they can have angles, arches, etc.

[image: image61.emf]Node1 ReferenceName Node2

Figure 43 –Example of a Reference connecting two Nodes
Table 36 defines how symmetric and asymmetric References are represented in general, and also defines shortcuts for some ReferenceTypes. Although it is recommended to use those shortcuts, it is not required. Thus, instead of using the shortcut also the generic solution can be used.

Table 36 – Simple Notation of Nodes depending on the NodeClass

	ReferenceType
	Graphical Representation
	Comment

	Any symmetric ReferenceType
	
[image: image62.emf]ReferenceType

	Symmetric ReferenceTypes are represented as lines between Nodes with closed and filled arrows on both sides pointing to the connected Nodes. Near to the line has to be a text containing the string-part of the BrowseName of the ReferenceType.

	Any asymmetric ReferenceType
	
[image: image63.emf]ReferenceType

	Asymmetric ReferenceTypes are represented as lines between Nodes with a closed and filled arrow on the side pointing to the TargetNode. Near to the line has to be a text containing the string-part of the BrowseName of the ReferenceType.

	Any hierarchical ReferenceType
	
[image: image64.emf]ReferenceType

	Asymmetric ReferenceTypes that are subtypes of HierarchicalReferences should be exposed the same way as asymmetric ReferenceTypes except that an open arrow is used.

	HasComponent
	
[image: image65.emf]
	The notation provides a shortcut for HasComponent References shown on the left. The single hashed line has to be near the TargetNode.

	HasProperty
	
[image: image66.emf]
	The notation provides a shortcut for HasProperty References shown on the left. The double hashed lines have to be near the TargetNode.

	HasTypeDefinition
	
[image: image67.emf]
	The notation provides a shortcut for HasTypeDefinition References shown on the left. The double closed and filled arrows have to point to the TargetNode.

	HasSubtype
	
[image: image68.emf]
	The notation provides a shortcut for HasSubtype References shown on the left. The double closed arrows have to point to the SourceNode.

	HasEventSource
	
[image: image69.emf]
	The notation provides a shortcut for HasEventSource References shown on the left. The closed arrow has to point to the TargetNode.

D.2.3 Extended Notation

In the extended Notation some additional concepts are introduced. It is allowed only using some of those concepts on elements of a figure.

The following rules define some special handling of structures.

· In general, values of all DataTypes should be represented by an appropriate string representation. Whenever a NamespaceIndex or LocaleId is used in those structures they can be omitted.

· The DisplayName contains a LocaleId and a String. Such a structure can be exposed as [<LocaleId>:]<String>; where the LocaleId is optional. For example, a DisplayName can be “en:MyName”. Instead of that, also “MyName” can be used. This rule applies whenever a DisplayName is shown, including the text used in the graphical representation of a Node.

· The BrowseName contains the NamespaceIndex and a String. Such a structure can be exposed as [<NamespaceIndex>:]<String>; where the NamespaceIndex is optional. For example, a BrowseName can be “1:MyName”. Instead of that, also “MyName” can be used. This rule applies whenever a BrowseName is shown, including the text used in the graphical representation of a Node.

Instead of using the HasTypeDefinition reference to point from an Object or Variable to its ObjectType or VariableType the name of the TypeDefinition can be added to the text used in the Node. The TypeDefinition has to be prefixed with “::”. Figure 44 gives an example, where “Node1” uses a Reference and “Node2” the shortcut. A figure can contain HasTypeDefinition References for some Nodes and the shortcut for other Nodes. It is not allowed that a Node uses the shortcut and additionally is the SourceNode of a HasTypeDefinition.

[image: image70.emf]Node1

Node2::SampleType

SampleType

Figure 44 – Example of using a TypeDefinition inside a Node
To display Attributes of a Node additional text can be put inside the form representing the Node under the text representing the DisplayName. The DisplayName and the text describing the Attributes have to be separated using a horizontal line. Each Attribute has to be set into a new text line. Each text line shall contain the Attribute name followed by an “=” and the value of the Attribute. On top of the first text line containing an Attribute shall be a text line containing the underlined text “Attribute”. It is not required to expose all Attributes of a Node. It is allowed only showing a subset of Attributes. If an optional Attribute is not provided, the Attribute can be marked in a line by strike through it, like “Description”. Examples of exposing Attributes are shown in Figure 45.

[image: image71.emf]FT1001

Attribute

NodeId = “1000“

NodeClass = Object

DisplayName = “FT1001“

BrowseName = “FTX001“

Description

EventNotifier = 0

DataItem

Attribute

NodeClass = Variable

DisplayName = “DataItem“

BrowseName = “DataItem“

MinimumSamplingInterval = -1

Figure 45 – Example of exposing Attributes
To avoid too many Nodes in a figure it is allowed to expose Properties inside a Node, similar to Attributes. Therefore, the text field used for exposing Attributes is extended. Under the last text line containing an Attribute a new text line containing the underlined text “Property” has to be added. If no Attribute is provided, the text has to start with this text line. After this text line, each new text line shall contain a Property, starting with the BrowseName of the Property followed by “=” and the value of the Value Attribute of the Property. Figure 46 shows some examples exposing Properties inline. It is allowed to expose some Properties of a Node inline, and other Properties as Nodes. It is not allowed to show a Property inline and as well as an additional Node.

[image: image72.emf]FT1001

Attribute

NodeId = “1000“

DisplayName = “FT1001“

BrowseName = “FTX001“

Description

EventNotifier = 0

Property

Prop1 = 12

Prop2 = “PropValue“

DataItem

Attribute

NodeClass = Variable

DisplayName = “DataItem“

BrowseName = “DataItem“

MinimumSamplingInterval = -1

Property

Prop1 = 12

Prop2 = “PropValue“

FT1002

Property

Prop1 = 12

Prop2 = “PropValue“

DataItemX

Property

Prop1 = 12

Prop2 = “PropValue“

Figure 46 – Example of exposing Properties inline
It is allowed to add additional information to a figure using the graphical representation, for example callouts.

� The attribute ids of Attributes are defined in � REF UAPart6 \h ��Part 6�.

� The owning Object or ObjectType is specified in the service call when invoking the Method.

� VariableTypes other then the PropertyType which is used for all Properties

�Mantis issue 551

�Mantis issue 551

_1254735369.vsd
View

_1264594232.vsd
Object

Asymmetric
Reference

Variable

VariableType

Type_A

ArrayExpose::Type_X

ExposesItsArray ::ModellingRuleType

HasModellingRule

A

A1::Type_X

A2::Type_X

EUUnit [Mandatory]

EUUnit

_1266763675.vsd
Seitlichen Ziehpunkt ziehen, um Breite des Textblocks zu ändern.

Text

Object

Reference
/ InverseName (optional)

Variable

Object

Reference
/ InverseName (optional)

Object

Reference
/ InverseName (optional)

Object

Variable

Variable:VariableType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

ReferenceType

Reference
/ InverseName (optional)

ObjectType

Reference
/ InverseName (optional)

Object

ObjectType

Method

Variable

ObjectType

VariableType

VariableType

Variable

ObjectType

Object

Object:ObjectType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

Reference
/ InverseName (optional)

Object

Variable

ObjectType

VariableType

Method

DataType

Asymmetric
Reference

Symmetric
Reference

View

ReferenceType

ObjectType

Asymmetric
Reference

VariableType

Object

VariableType

ObjectType

Object

Method

Variable

Symmetric
Reference

Asymmetric
Reference

Object

View

ObjectType

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

Text

Object

Text

Variable

ObjectType

Variable

Object

Asymmetric
Reference

Method

ObjectType

Object

Asymmetric
Reference

Variable

A1 [New]

A2 [Any]

A1.1 [New]

A2.1 [New]

A2.2 [Any]

A3 [Shared]

A2.3 [Shared]

A2.4 [None]

A4 [None]

A1.2 [Any]

SuperTypeX

SubTypeX

A3.1 [New]

A3.2 [Any]

A3.3 [Shared]

A3.4 [None]

A4.1 [New]

A4.2 [Any]

A4.3 [Shared]

A4.4 [None]

A1.3 [Shared]

A1.4 [None]

A1.1 [New]

A1 [New]

A2 [Any]

A  [Shared, Any or New]

A1.2 [Any]

A  [Shared, Any or New]

A1.1 [New]

A1.2 [Any]

Step 1

Step 2

A1 [New]

SuperTypeX

SubTypeX

A1 [New]

SuperTypeX

SubTypeX

A1.3 [Shared]

A1.3 [Shared]

A1 [New]

A1.3 [Shared]

Step 3 -Changing the overriding Node

A1 [New]

SuperTypeX

SubTypeX

A1.3 [Shared]

A1 [New]

A1.3 [Shared]

A1.3.1 [New]

A1 [New]

A1.1 [New]

A1 [New]

SuperTypeX

Instance

A2 [Any]

A3 [Shared]

A4 [None]

A1.2 [Any]

A1.3 [Shared]

A1.4 [None]

A2.1 [New]

A2.2 [Any]

A2.3 [Shared]

A2.4 [None]

A3.1 [New]

A3.2 [Any]

A3.3 [Shared]

A3.4 [None]

A4.1 [New]

A4.2 [Any]

A4.3 [Shared]

A4.4 [None]

A1.1  [New created]

A1 [New created]

A2 [already existed]

A1.2  [new created]

A2.1
[already existed]

A2.2
[already existed]

A2.3
[already existed]

A1.1 [New]

A1 [New]

SuperTypeX

A1.2 [Any]

A1.3 [Shared]

A1.4 [None]

A2 [Any]

A3 [Shared]

A4 [None]

Instance

Á1

A1.1

A1.2

A2

A1.1 (x)

A1.3 (x)

Not allowed:
Indirect InstanceDeclaration New used by Shared and New
Direct InstanceDeclaration New and indirect Shared
Problematic:
Indirect InstanceDeclaration New used by Shared and Any
Indirect InstanceDeclaration Any used by Shared and New
Indirect InstanceDeclaration Any used by Shared and Any
Direct InstanceDeclaration New and indirect Any
Direct InstanceDeclaration Any and indirect Shared

A1.1 [New]

A1.1 [New]

SuperTypeX

A1 [New]

Instance1

A2 [Shared]

A1 [New]

A1 [New]

Instance2

A1
[Cardinality 1:2]

Type_A

Type_B

Type_C

Instance1::Type:_A

Instance2::Type_A

I1::Type_C

Instance2::Type_A

I1::Type_C

A_Type

A1 [Shared]

A1.1 [New]

A1.2 [Shared]

A1 [New]

A1.1 [New]

A1.2 [Shared]

A

A1 [New]

A1.1 [New]

A1
[Cardinality 1:2]

Type_A

Type_B

Type_C

Instance1::Type:_A

Instance2::Type_A

I1::Type_C

Instance2::Type_A

I1::Type_C

AI_BLK_1

AI_BLK_TYPE

SP1:SetPoint

SP1:SetPoint

New::ModellingRuleType

HasModellinRule

AI_BLK_1

AI_BLK_TYPE

SP1:SetPoint

SP1:SetPoint

New::ModellingRuleType

HasModellinRule

HasModellinRule

Organizes

Organizes

AI_BLK_1

AI_BLK_TYPE

SP1::SetPoint

SP1::SetPoint

New::ModellingRuleType

HasModellinRule

Icon::Icon

Shared::ModellingRuleType

HasModellinRule

UseCaseScenario

MaintainenceReport

Type_A

A1 [Optional]

A2 [Mandatory]

Type_B

A [Mandatory]

A2 [Mandatory]

Type_B

A [Mandatory]

A2 [Mandatory]

A1 [Mandatory]

Modified Type

A1 [Optional]

_1280886651.vsd
ObjectType

Object

Variable

Asymmetric
Reference

B (8)

BetaType
(Fully Inherited)

D (4)

X

F (7)

C (3)

H (9)

Z

J (10)

Y

_1281278272.vsd
ObjectType

Object

B1::Type_B
[Mandatory]

Type_A

C1:Type_C
[Mandatory]

B1::Type_B

A1::Type_A

A2::Type_A

B1::Type_B

C1:Type_C

C1:Type_C

A3::Type_A

B1::Type_B

C1:Type_C

C1:Type_C

C1:Type_C

_1289715424.vsd
Object

ObjectType

Variable

ID Card

Drag the side handles to change the width of the text block.

View

VariableType

?

 ￼ - ￼ (￼)
/ letzte Bearbeitung: ￼ ￼ ￼ / Erstellung: ￼ ￼

Asymmetric
Reference

Variable

Object

DataType

ReferenceType

References

HierarchicalReferences

NonHierarchicalReferences

HasEventSource

HasNotifier

HasChild

Organizes

Aggregates

HasSubtype

HasProperty

HasComponent

HasOrderedComponent

HasModellingRule

HasTypeDefinition

HasEncoding

HasModelParent

GeneratesEvent

HasDescription

AlwaysGeneratesEvent

_1281277672.doc

[image: image1]

Each DataType can have several DataTypeEncoding, e.g. “Default”, “UA Binary”, and “XML”

Variable �of VariableType�DataTypeDictionaryType

Value identifies the description of the data type in the DataTypeDictionary

Several DataTypeEncoding can point to the same DataTypeDescription, e.g. “Default” and “UA Binary”

Variable �of VariableType�DataTypeDictionaryType

Object�of ObjectType�DataTypeEncodingType

Object �of ObjectType�DataTypeSystemType

Variable �of VariableType�DataTypeDescriptionType

Object�of ObjectType�DataTypeEncodingType

Details regarding the References used in this figure are shown in the next figure.

DataType

Object �of ObjectType�DataTypeSystemType

Variable �of VariableType�DataTypeDescriptionType

Object�of ObjectType�DataTypeEncodingType

_1267007990.vsd
Area 1

Level Sensor

Machine B

Tank A

Temp Sensor

High Temp

High Level

Low Level

HasNotifier
ReferenceType

Legend

Event Sourcing Node

Event Notifier Object

HasEventSource
ReferenceType

Phase Start

Server
Object

Tank Farm 1

Tank B

Phase Start

Level Sensor

Temp Sensor

High Temp

High Level

_1280885915.vsd
ObjectType

Object

Variable

Asymmetric
Reference

AlphaType (1)

B (2)

E (5)

C (3)

D (4)

X

Y

BetaType (6)

F (7)

J (10)

H (9)

Z

B (8)

_1280835755.vsd
ObjectType

Reference
/ InverseName (optional)

ObjectType

SystemEventType

AuditEventType

AuditNodeManagement EventType

AuditUpdate EventType

AuditAddNodes EventType

AuditSecurity EventType

AuditSession EventType

AuditChannel EventType

AuditAddReferences EventType

AuditDeleteNodes EventType

AuditOpenSecure ChannelEventType

AuditDelete ReferencesEventType

AuditActivateSessionEventType

AuditCreateSessionEventType

BaseEventType

SemanticChangeEventType

BaseModelChange EventType

GeneralModel ChangeEventType

DeviceFailure EventType

AuditUpdateMethod EventType

AuditHistory UpdateEventType

AuditWrite UpdateEventType

AuditCancel EventType

AuditCertificateDataMismatchEventType

AuditCertificate InvalidEventType

AuditCertificate ExpiredEventType

AuditCertificate MismatchEventType

AuditCertificate UntrustedEventType

AuditCertificate RevokedEventType

AuditCertificate EventType

AuditUrlMismatch EventType

_1267007889.vsd
Area 1

Level Sensor

Machine B

Tank A

Temp Sensor

High Temp

High Level

Low Level

HasNotifier
ReferenceType

Legend

Event Sourcing Node

Event Notifier Object

HasEventSource
ReferenceType

Phase Start

_1264602505.vsd
ObjectType

Object

Variable

AlphaType

E

B
[Mandatory]

C
[Mandatory]

Alpha1

D
[Mandatory]

B

F

C

D

_1265121194.vsd
ObjectType

Object

Asymmetric
Reference

Variable

AI_BLK_1

AI_BLK_TYPE

SP1:SetPoint

SP1:SetPoint

Mandatory::ModellingRuleType

HasModellingRule

_1265200466.vsd
ObjectType

Object

Type_A

D [Optional]

C [Mandatory]

B [Optional]

E [Mandatory]

F [Optional]

A1

C

B

A2

C

E

B

A9

C

D

E

A4

C

D

A5

C

D

F

F

A6

C

D

F

A7

C

D

F

A8

C

D

F

B

A3

C

E

F

B

A11

C

D

E

F

B

A10

C

D

E

F

F

B

A12

C

D

E

F

B

A13

C

D

E

F

_1264600480.vsd
ObjectType

Object

A2

B::Type_B
[Mandatory]

A3

B::Type_B
[Optional]

Type_A

B::Type_B  [Mandatory]

A1

B::Type_B

_1254737054.vsd
Asymmetric
Reference

ReferenceType

_1254737321.vsd

_1258394836.vsd
ObjectType

Object

Variable

Asymmetric
Reference

AlphaType

B

Alpha2

C

Alpha1

B

B

HasModelParent

HasModelParent

HasModelParent

HasModelParent

_1261796958.ppt

TypeDictionary

TypeDictionary

Imports

StructuredType

OpaqueType

EnumeratedType

Contains

TypeDescription

FieldType

References

Is Subtype Of

Contains

Is Subtype Of

_1254836780.vsd
Object

Object

Variable

FT1001

Attribute
NodeId = “1000“
NodeClass = Object
DisplayName = “FT1001“
BrowseName = “FTX001“
Description
EventNotifier = 0

DataItem

Attribute
NodeClass = Variable
DisplayName = “DataItem“
BrowseName = “DataItem“
MinimumSamplingInterval = -1

_1255956772.vsd
Object

Asymmetric
Reference

Variable

VariableType

Type_A

ArrayExpose::Type_X

ExposesItsArray ::ModellingRuleType

HasModellingRule

A

A1::Type_X

A2::Type_X

_1254836794.vsd
Object

Object

Variable

FT1001

Attribute
NodeId = “1000“
DisplayName = “FT1001“
BrowseName = “FTX001“
Description
EventNotifier = 0
Property
Prop1 = 12
Prop2 = “PropValue“

DataItem

Attribute
NodeClass = Variable
DisplayName = “DataItem“
BrowseName = “DataItem“
MinimumSamplingInterval = -1
Property
Prop1 = 12
Prop2 = “PropValue“

FT1002

Property
Prop1 = 12
Prop2 = “PropValue“

DataItemX

Property
Prop1 = 12
Prop2 = “PropValue“

_1254836193.vsd
ObjectType

Object

Asymmetric
Reference

Node1

Node2::SampleType

SampleType

_1254737145.vsd

_1254737238.vsd

_1254737305.vsd

_1254737073.vsd

_1254736246.vsd
Symmetric
Reference

ReferenceType

_1254736989.vsd
ReferenceType

_1254735894.vsd
Object

Asymmetric
Reference

Node1

ReferenceName

Node2

_1212404991.doc

HasDescription

HasDescription

HasDescription

HasDescription

HasEncoding

HasComponent

Variable�Int32�of VariableType�DataTypeDescriptionType

Variable�BasicTypes�of VariableType�DataTypeDictionaryType

Variable�Int32�of VariableType�DataTypeDescriptionType

HasEncoding

HasComponent

HasComponent

HasComponent

HasComponent

HasComponent

Variable�BasicXMLTypes�of VariableType�DataTypeDictionaryType

Object�XML Schema

of ObjectType�DataTypeSystemType

Object

Default Binary�of ObjectType�DataTypeEncodingType

Object�EDDL XML�of ObjectType�DataTypeEncodingType

HasEncoding

Object�Default XML�of ObjectType�DataTypeEncodingType

HasEncoding

DataType

Variable�Int32�of VariableType�DataTypeDescriptionType

Variable�BasicEDDLTypes�of VariableType�DataTypeDictionaryType

Object�OPC Binary�of ObjectType�DataTypeSystemType

Object�UA Binary�of ObjectType�DataTypeEncodingType

_1254735015.vsd
VariableType

_1254735223.vsd
ReferenceType

_1254735289.vsd
Method

_1254735075.vsd
DataType

_1254734899.vsd
ObjectType

_1254734951.vsd
Variable

_1254734670.vsd
Object

_1209294911.doc

[image: image1]

 Attributes

TargetNode

HasComponent

TargetNode

Node Class

Browse Name

 References

	HasComponent

	*

	*

_1209304143.doc

1..N

0..N

0..N

cc

0..N

1

0..N

“Block”

Contains

symmetric = TRUE

ReferenceType “Contains”

symmetric = FALSE

InverseName = “ContainedIn”

This Reference Type provides the type definition for all “Contains” and “ContainedIn” References

CommunicatesWith

CommunicatesWith

ReferenceType “CommunicatesWith”

ContainedIn

“Block”

“Device”

_1209803776.doc

Variables defined by a VariableType point to the same DataType as its VariableType or a subtype of it

VariableTypes define the DataType for their Value Attribute

DataType

Variable

VariableType

_1209323654.vsd

Accept
Request
?

Action Request

Generate
 Action
AuditEvent

Yes

Generate
Security AuditEvent

No

Event Notifications

Return Result

Return Error

Accept
Request
?

Publish Request

Return Event Notifications

No

Generate
Security AuditEvent

Yes

Return Result

Return Error

Perform Action

_1209294948.doc

*ReferenceName

SourceNode

* Name of the Reference’s ReferenceType

TargetNode

_1204541779.doc

Event

Notifications

Methods

Object

Invoke

Data change Notifications

Read/Write

_____()

_____()

_____()

References to other Objects

Variables

_1205242676.doc

1..N

0..N

0..N

cc

Variable

“SP”

 Attributes

	Value

This value is not dynamic. Inherited value may be overridden.

0..N

1

0..N

VariableType

“SetPoint”

 References

 	HasComponent

ObjectType

“AI_BLK_TYPE”

Variable defined by a VariableType.

Used by a TypeDefinitionNode and is therefore an InstanceDeclaration

TypeDefinitionNodes

 References

	HasTypeDefinition

 Attributes

 	Value

_1205331181.doc

1..N

0..N

0..N

cc

This value is dynamic, but its initial value is inherited. The inherited value may be overridden when the variable is created by the server.

 Attributes

	Value

This value is not dynamic. Inherited value may be overridden.

0..N

1

0..N

 References

 	HasTypeDefinition

 References

 	HasTypeDefinition

	HasComponent

Object

“AI_BLK_1”

 Attributes

	Value

Variable

“SP”

Variable Type

“SetPoint”

 References

 	HasComponent

ObjectType

“AI_BLK_TYPE”

 References

 	HasTypeDefinition

Variable defined by a VariableType.

Type Definition Nodes

Variable

“SP”

Variable defined by being part of the ObjectType.

 Attributes

 	Value

_1207549797.vsd

Accept
Request
?

Action Request

Request Publish

Yes

Generate
Security AuditEvent

No

Event Notifications

Return Result

Return Error

Get AuditEvent Notifications from Aggregated servers

Accept
Request
?

Publish Request

Return Event Notifications

No

Generate
Security AuditEvent

Yes

Return Success

Return Error

No

Issue Request to Aggregated Server

Request
Timeout
?

Return Error

Yes

Generate Action AuditEvent if required

_1205070292.doc

1..N

0..N

0..N

cc

This value is dynamic, but its initial value is inherited from the value of the VariableType. The inherited value may be overridden when the Variable is created by the server.

 Attributes

	Value

0..N

1

0..N

 Attributes

 	Value

 References

	HasTypeDefinition

VariableType

“SetPoint”

Variable defined by a VariableType.

Inherited Value may be overridden.

TypeDefinitionNodes

Variable

“SP”

_1201750579.doc

References define relationships to other nodes

Attributes describe a node

Node

Node

 Attributes

 References

_1194711088.doc

Domain Model �(incl. user-defined �Data and Reference �Types)

OPC UA Meta Model

0..N

UML Representation

Classes

<<TypeExtension>> Objects

Objects

